-
Notifications
You must be signed in to change notification settings - Fork 48
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Fix training and baseline code (#64)
Adapt `train.py` to the updated relbench package. This is work in progress. --------- Co-authored-by: kexinhuang12345 <[email protected]> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
- Loading branch information
1 parent
0433616
commit 8702a2d
Showing
15 changed files
with
387 additions
and
711 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,174 +1,98 @@ | ||
import argparse | ||
from typing import Dict | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import torch | ||
from rtb.data import Table | ||
from rtb.data.task import TaskType | ||
from rtb.datasets import get_dataset | ||
from torch import Tensor | ||
from torchmetrics import AUROC, AveragePrecision, MeanAbsoluteError | ||
|
||
from relbench.data import RelBenchDataset, Table | ||
from relbench.data.task import TaskType | ||
from relbench.datasets import get_dataset | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--dataset", type=str, default="relbench-forum") | ||
parser.add_argument("--task", type=str, default="UserContributionTask") | ||
parser.add_argument("--dataset", type=str, default="rel-stackex") | ||
parser.add_argument("--task", type=str, default="rel-stackex-engage") | ||
# Classification task: rel-stackex-engage | ||
# Regression task: rel-stackex-votes | ||
args = parser.parse_args() | ||
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
|
||
dataset = get_dataset(name=args.dataset, root="./data") | ||
if args.task not in dataset.tasks: | ||
raise ValueError( | ||
f"'{args.dataset}' does not support the given task {args.task}. " | ||
f"Please choose the task from {list(dataset.tasks.keys())}." | ||
) | ||
|
||
task = dataset.tasks[args.task] | ||
train_table = dataset.make_train_table(args.task) | ||
val_table = dataset.make_val_table(args.task) | ||
test_table = dataset.make_test_table(args.task) | ||
|
||
if task.task_type == TaskType.BINARY_CLASSIFICATION: | ||
metrics = { | ||
"AUROC": AUROC(task="binary").to(device), | ||
"AP": AveragePrecision(task="binary").to(device), | ||
} | ||
|
||
elif task.task_type == TaskType.REGRESSION: | ||
metrics = { | ||
"MAE": MeanAbsoluteError(squared=False).to(device), | ||
} | ||
|
||
|
||
def get_metrics(pred: Tensor, target: Tensor) -> Dict[str, float]: | ||
out_dict: Dict[str, float] = {} | ||
for metric_name, metric in metrics.items(): | ||
metric.reset() | ||
metric.update(pred, target) | ||
out_dict[metric_name] = float(metric.compute()) | ||
return out_dict | ||
|
||
|
||
def global_zero(train_table: Table, pred_table: Table) -> Dict[str, float]: | ||
target = pred_table.df[task.target_col].astype(float).values | ||
target = torch.from_numpy(target) | ||
|
||
pred = torch.zeros_like(target) | ||
|
||
return get_metrics(pred, target) | ||
|
||
|
||
def global_mean(train_table: Table, pred_table: Table) -> float: | ||
target = pred_table.df[task.target_col].astype(float).values | ||
target = torch.from_numpy(target) | ||
|
||
pred = train_table.df[task.target_col].astype(float).values | ||
pred = torch.from_numpy(pred) | ||
pred = pred.mean().expand(target.size(0)) | ||
|
||
return get_metrics(pred, target) | ||
|
||
|
||
def global_median(train_table: Table, pred_table: Table) -> float: | ||
target = pred_table.df[task.target_col].astype(float).values | ||
target = torch.from_numpy(target) | ||
|
||
pred = train_table.df[task.target_col].astype(float).values | ||
pred = torch.from_numpy(pred) | ||
pred = pred.median().expand(target.size(0)) | ||
|
||
return get_metrics(pred, target) | ||
|
||
|
||
def entity_mean(train_table: Table, pred_table: Table) -> float: | ||
fkey = list(train_table.fkey_col_to_pkey_table.keys())[0] | ||
df = train_table.df.groupby(fkey).agg({task.target_col: "mean"}) | ||
df = pred_table.df.merge(df, how="left", on=fkey) | ||
|
||
target = df[f"{task.target_col}_x"].astype(float).values | ||
target = torch.from_numpy(target) | ||
|
||
pred = df[f"{task.target_col}_y"].fillna(0).astype(float).values | ||
pred = torch.from_numpy(pred) | ||
|
||
return get_metrics(pred, target) | ||
|
||
|
||
def entity_median(train_table: Table, pred_table: Table) -> float: | ||
fkey = list(train_table.fkey_col_to_pkey_table.keys())[0] | ||
df = train_table.df.groupby(fkey).agg({task.target_col: "median"}) | ||
df = pred_table.df.merge(df, how="left", on=fkey) | ||
|
||
target = df[f"{task.target_col}_x"].astype(float).values | ||
target = torch.from_numpy(target) | ||
|
||
pred = df[f"{task.target_col}_y"].fillna(0).astype(float).values | ||
pred = torch.from_numpy(pred) | ||
|
||
return get_metrics(pred, target) | ||
|
||
|
||
def random(train_table: Table, pred_table: Table) -> float: | ||
target = pred_table.df[task.target_col].astype(int).values | ||
target = torch.from_numpy(target) | ||
|
||
pred = torch.rand(target.size()) | ||
|
||
return get_metrics(pred, target) | ||
|
||
|
||
def majority(train_table: Table, pred_table: Table) -> float: | ||
target = pred_table.df[task.target_col].astype(int).values | ||
target = torch.from_numpy(target) | ||
|
||
past_target = train_table.df[task.target_col].astype(int).values | ||
past_target = torch.from_numpy(past_target) | ||
|
||
majority_label = float(past_target.bincount().argmax()) | ||
pred = torch.full((target.numel(),), fill_value=majority_label) | ||
|
||
return get_metrics(pred, target) | ||
|
||
# TODO: remove process=True once correct data is uploaded. | ||
dataset: RelBenchDataset = get_dataset(name=args.dataset, process=True) | ||
task = dataset.get_task(args.task) | ||
|
||
train_table = task.train_table | ||
val_table = task.val_table | ||
test_table = task.test_table | ||
|
||
|
||
def evaluate(train_table: Table, pred_table: Table, name: str) -> Dict[str, float]: | ||
is_test = task.target_col not in pred_table.df | ||
if name == "global_zero": | ||
pred = np.zeros(len(pred_table)) | ||
elif name == "global_mean": | ||
mean = train_table.df[task.target_col].astype(float).values.mean() | ||
pred = np.ones(len(pred_table)) * mean | ||
elif name == "global_median": | ||
median = np.median(train_table.df[task.target_col].astype(float).values) | ||
pred = np.ones(len(pred_table)) * median | ||
elif name == "entity_mean": | ||
fkey = list(train_table.fkey_col_to_pkey_table.keys())[0] | ||
df = train_table.df.groupby(fkey).agg({task.target_col: "mean"}) | ||
df.rename(columns={task.target_col: "__target__"}, inplace=True) | ||
df = pred_table.df.merge(df, how="left", on=fkey) | ||
pred = df["__target__"].fillna(0).astype(float).values | ||
elif name == "entity_median": | ||
fkey = list(train_table.fkey_col_to_pkey_table.keys())[0] | ||
df = train_table.df.groupby(fkey).agg({task.target_col: "median"}) | ||
df.rename(columns={task.target_col: "__target__"}, inplace=True) | ||
df = pred_table.df.merge(df, how="left", on=fkey) | ||
pred = df["__target__"].fillna(0).astype(float).values | ||
elif name == "random": | ||
pred = np.random.rand(len(pred_table)) | ||
elif name == "majority": | ||
past_target = train_table.df[task.target_col].astype(int) | ||
majority_label = int(past_target.mode()) | ||
pred = torch.full((len(pred_table),), fill_value=majority_label) | ||
else: | ||
raise ValueError("Unknown eval name called {name}.") | ||
return task.evaluate(pred, None if is_test else pred_table) | ||
|
||
|
||
trainval_table_df = pd.concat([train_table.df, val_table.df], axis=0) | ||
trainval_table = Table( | ||
df=trainval_table_df, | ||
fkey_col_to_pkey_table=train_table.fkey_col_to_pkey_table, | ||
pkey_col=train_table.pkey_col, | ||
time_col=train_table.time_col, | ||
) | ||
|
||
if task.task_type == TaskType.REGRESSION: | ||
train_metrics = global_zero(train_table, train_table) | ||
val_metrics = global_zero(train_table, val_table) | ||
print("Global Zero:") | ||
print(f"Train: {train_metrics}") | ||
print(f"Val: {val_metrics}") | ||
|
||
train_metrics = global_mean(train_table, train_table) | ||
val_metrics = global_mean(train_table, val_table) | ||
print("Global Mean:") | ||
print(f"Train: {train_metrics}") | ||
print(f"Val: {val_metrics}") | ||
|
||
train_metrics = global_median(train_table, train_table) | ||
val_metrics = global_median(train_table, val_table) | ||
print("Global Median:") | ||
print(f"Train: {train_metrics}") | ||
print(f"Val: {val_metrics}") | ||
|
||
train_metrics = entity_mean(train_table, train_table) | ||
val_metrics = entity_mean(train_table, val_table) | ||
print("Entity Mean:") | ||
print(f"Train: {train_metrics}") | ||
print(f"Val: {val_metrics}") | ||
|
||
train_metrics = entity_median(train_table, train_table) | ||
val_metrics = entity_median(train_table, val_table) | ||
print("Entity Median:") | ||
print(f"Train: {train_metrics}") | ||
print(f"Val: {val_metrics}") | ||
eval_name_list = [ | ||
"global_zero", | ||
"global_mean", | ||
"global_median", | ||
"entity_mean", | ||
"entity_median", | ||
] | ||
|
||
for name in eval_name_list: | ||
train_metrics = evaluate(train_table, train_table, name=name) | ||
val_metrics = evaluate(train_table, val_table, name=name) | ||
test_metrics = evaluate(trainval_table, test_table, name=name) | ||
print(f"{name}:") | ||
print(f"Train: {train_metrics}") | ||
print(f"Val: {val_metrics}") | ||
print(f"Test: {test_metrics}") | ||
|
||
elif task.task_type == TaskType.BINARY_CLASSIFICATION: | ||
train_metrics = random(train_table, train_table) | ||
val_metrics = random(train_table, val_table) | ||
print("Random") | ||
print(f"Train: {train_metrics}") | ||
print(f"Val: {val_metrics}") | ||
|
||
train_metrics = majority(train_table, train_table) | ||
val_metrics = majority(train_table, val_table) | ||
print("Majority:") | ||
print(f"Train: {train_metrics}") | ||
print(f"Val: {val_metrics}") | ||
eval_name_list = ["random", "majority"] | ||
for name in eval_name_list: | ||
train_metrics = evaluate(train_table, train_table, name=name) | ||
val_metrics = evaluate(train_table, val_table, name=name) | ||
test_metrics = evaluate(trainval_table, test_table, name=name) | ||
print(f"{name}:") | ||
print(f"Train: {train_metrics}") | ||
print(f"Val: {val_metrics}") | ||
print(f"Test: {test_metrics}") |
Oops, something went wrong.