Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Prototype demonstrating possible px.overlay #2868

Draft
wants to merge 8 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions packages/python/plotly/plotly/basedatatypes.py
Original file line number Diff line number Diff line change
Expand Up @@ -391,6 +391,9 @@ class is a subclass of both BaseFigure and widgets.DOMWidget.
self._animation_duration_validator = animation.DurationValidator()
self._animation_easing_validator = animation.EasingValidator()

# Space for auxiliary data
self._aux = dict()

# Template
# --------
# ### Check for default template ###
Expand Down
2 changes: 2 additions & 0 deletions packages/python/plotly/plotly/express/_core.py
Original file line number Diff line number Diff line change
Expand Up @@ -2057,6 +2057,8 @@ def make_figure(args, constructor, trace_patch=None, layout_patch=None):

configure_axes(args, constructor, fig, orders)
configure_animation_controls(args, constructor, fig)
# store args in figure metadata
fig._aux["px"] = dict(args=args)
return fig


Expand Down
15 changes: 15 additions & 0 deletions proto/px_overlay/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
# `px.overlay` prototype

This demonstrates one possible way of combining two figures into a single
figure.

To see an example, run (from the root of the `plotly.py` repo):

```bash
PYTHONPATH=proto/px_overlay python proto/px_overlay/multilayered_data_test.py
```

To see the code that does the overlaying, start with the `px_simple_overlay`
function in `proto/px_overlay/px_overlay.py`. In this function there are a few
comments marked with `TODO` that indicate places for improvement in the
functionality.
27 changes: 27 additions & 0 deletions proto/px_overlay/facet_col_wrap_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
import plotly.express as px
import test_data
from px_combine import px_simple_combine

df = test_data.multilayered_data(d_divs=[6, 3, 2], rwalk=0.1)
last_cat = df.columns[2]
last_cat_types = list(set(df[last_cat]))
fig0 = px.line(
df.loc[df[last_cat] == last_cat_types[0]],
x="x",
y="y",
facet_col=df.columns[0],
facet_col_wrap=3,
color=df.columns[1],
).update_layout(title="%s=%s" % (last_cat, last_cat_types[0]))
fig1 = px.line(
df.loc[df[last_cat] == last_cat_types[1]],
x="x",
y="y",
facet_col=df.columns[0],
facet_col_wrap=3,
color=df.columns[1],
).update_layout(title="%s=%s" % (last_cat, last_cat_types[1]))
fig = px_simple_combine(fig0, fig1, fig1_secondary_y=True)
fig0.show()
fig1.show()
fig.show()
43 changes: 43 additions & 0 deletions proto/px_overlay/find_field.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
import plotly.graph_objects as go
from plotly import basedatatypes

# Search down an object's composition tree and find fields with a given name


def find_field(obj, field, basepath="", max_path_len=80, forbidden=["parent"]):
if obj is not None and len(basepath) < max_path_len:
for f in dir(obj):
joined_path = ".".join([basepath, f])
if f == field:
print(joined_path)
if (
(f not in forbidden)
and (not f.startswith("_"))
and (not f.endswith("_"))
):
find_field(eval("obj.%s" % (f,)), field, joined_path)


def find_all_xy_traces():
for field in dir(go):
call_str = "go.%s" % (field,)
call = eval(call_str)
try:
if issubclass(call, basedatatypes.BaseTraceType):
obj = call()
if "xaxis" in obj and "yaxis" in obj:
yield (call_str)
except TypeError:
pass


# s=go.Scatter()
# s=go.Bar()
# find_field(s,"color",basepath="scatter")
# print()
# find_field(s,"color",basepath="bar")

for call_str in find_all_xy_traces():
call = eval(call_str)
find_field(call(), "color", basepath=call_str)
print()
29 changes: 29 additions & 0 deletions proto/px_overlay/map_axis_pair_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import px_overlay
import pytest

fig0 = px_overlay.make_subplots_all_secondary_y(3, 4)
fig1 = px_overlay.make_subplots_all_secondary_y(4, 5)

for dims, f in zip([(3, 4), (4, 5)], [fig0, fig1]):
for r, c in px_overlay.multi_index(*dims):
for sy in [False, True]:
f.add_trace(go.Scatter(x=[], y=[]), row=r + 1, col=c + 1, secondary_y=sy)

fig0.add_annotation(row=2, col=3, text="hi", x=0.25, xref="x domain", y=3)
fig0.add_annotation(
row=3, col=4, text="hi", x=0.25, xref="x domain", y=2, secondary_y=True
)

for an in fig0.layout.annotations:
oldaxpair = tuple([an[ref] for ref in ["xref", "yref"]])
newaxpair = px_overlay.map_axis_pair(fig0, fig1, oldaxpair)
newan = go.layout.Annotation(an)
print(oldaxpair)
print(newaxpair)
newan["xref"], newan["yref"] = newaxpair
fig1.add_annotation(newan)

fig0.show()
fig1.show()
56 changes: 56 additions & 0 deletions proto/px_overlay/multilayered_data_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
import test_data
import numpy as np
import plotly.express as px
from px_overlay import px_simple_overlay

# Demonstrates px_overlay prototype.

# Make some data that can be faceted by row, col and color, and split into 2
# sets, which will go to the first and second figure respectively.
df = test_data.multilayered_data(d_divs=[2, 3, 4, 2], rwalk=0.1)

# The titles of the figures use the last dimension in the data. The title is
# formatted "column_name=column_value", so here we extract the column name.
last_cat = df.columns[3]
figs = []
for px_call, last_cat_0 in zip([px.line, px.bar], list(set(df[last_cat]))):
# px_call is the chart type to make and last_cat_0 is the column_value for
# that figure which is used in forming the title.
df_slice = df.loc[df[last_cat] == last_cat_0]
fig = px_call(
df_slice,
x="x",
y="y",
facet_row=df.columns[0],
facet_col=df.columns[1],
color=df.columns[2],
)

fig.update_layout(title="%s=%s" % (last_cat, last_cat_0,))
figs.append(fig)

# Add some annotations to make sure they are copied to the final figure properly
figs[0].add_hline(y=1, row=1, col="all")
figs[0].add_annotation(
x=0.25, y=0.5, xref="x domain", yref="y domain", row=2, col=3, text="yo"
)
# Note that these annotations should be mapped to a secondary y axis (observe this
# in the final figure by dragging their corresponding secondary y axes).
figs[1].add_vline(x=10, row="all", col=2)
figs[1].add_annotation(
x=0.5, y=0.35, xref="x domain", yref="y", row=1, col=2, text="budday"
)
# Set the bar modes for both to see that the first figure that the barmode for
# the final figure will be taken from the figure that has bars.
figs[0].layout.barmode = "group"
figs[1].layout.barmode = "relative"

# overlay the figures
final_fig = px_simple_overlay(*figs, fig1_secondary_y=True)

# Show the initial figures
for fig in figs:
fig.show()

# Show the final figure
final_fig.show()
Loading