Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update sharded_moe.py to support top2 gate with Tutel #6948

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions csrc/aio/common/deepspeed_aio_common.cpp
Original file line number Diff line number Diff line change
@@ -300,8 +300,9 @@ int regular_read(const char* filename, std::vector<char>& buffer)
} while (r > 0);

if (read_bytes != num_bytes) {
std::cerr << "read error " << " read_bytes (read) = " << read_bytes
<< " num_bytes (fstat) = " << num_bytes << std::endl;
std::cerr << "read error "
<< " read_bytes (read) = " << read_bytes << " num_bytes (fstat) = " << num_bytes
<< std::endl;
}
assert(read_bytes == num_bytes);
close(fd);
10 changes: 6 additions & 4 deletions csrc/aio/py_lib/deepspeed_py_aio.cpp
Original file line number Diff line number Diff line change
@@ -71,8 +71,9 @@ int deepspeed_py_aio_write(const torch::Tensor& buffer,

const std::chrono::duration<double> fn_time =
std::chrono::high_resolution_clock::now() - start_time;
std::cout << "Elapsed time(usec): " << "aio = " << aio_time.count() * 1e6
<< " call = " << fn_time.count() * 1e6 << std::endl;
std::cout << "Elapsed time(usec): "
<< "aio = " << aio_time.count() * 1e6 << " call = " << fn_time.count() * 1e6
<< std::endl;
return 0;
}

@@ -117,7 +118,8 @@ int deepspeed_py_aio_read(torch::Tensor& buffer,

const std::chrono::duration<double> fn_time =
std::chrono::high_resolution_clock::now() - start_time;
std::cout << "Elapsed time(usec): " << "aio = " << aio_time.count() * 1e6
<< " call = " << fn_time.count() * 1e6 << std::endl;
std::cout << "Elapsed time(usec): "
<< "aio = " << aio_time.count() * 1e6 << " call = " << fn_time.count() * 1e6
<< std::endl;
return 0;
}
2 changes: 1 addition & 1 deletion csrc/aio/py_lib/deepspeed_py_copy.cpp
Original file line number Diff line number Diff line change
@@ -10,7 +10,7 @@ Functionality for swapping tensors to/from (NVMe) storage devices.
#include "deepspeed_py_copy.h"
#include <omp.h>

#define ROUND_DOWN(size, step) ((size) & ~((step) - 1))
#define ROUND_DOWN(size, step) ((size) & ~((step)-1))

#if defined(__AVX512__) or defined(__AVX256__)
union AVX_Data {
10 changes: 6 additions & 4 deletions csrc/aio/py_lib/deepspeed_py_io_handle.cpp
Original file line number Diff line number Diff line change
@@ -95,8 +95,9 @@ int deepspeed_io_handle_t::read(torch::Tensor& buffer,
if (validate) { validate_aio_operation(true, filename, read_buffer, num_file_bytes); }
const std::chrono::duration<double> fn_time =
std::chrono::high_resolution_clock::now() - start_time;
std::cout << "Elapsed time(usec): " << "aio = " << aio_time.count() * 1e6
<< " call = " << fn_time.count() * 1e6 << std::endl;
std::cout << "Elapsed time(usec): "
<< "aio = " << aio_time.count() * 1e6 << " call = " << fn_time.count() * 1e6
<< std::endl;
return 0;
}

@@ -131,8 +132,9 @@ int deepspeed_io_handle_t::write(const torch::Tensor& buffer,

const std::chrono::duration<double> fn_time =
std::chrono::high_resolution_clock::now() - start_time;
std::cout << "Elapsed time(usec): " << "aio = " << aio_time.count() * 1e6
<< " call = " << fn_time.count() * 1e6 << std::endl;
std::cout << "Elapsed time(usec): "
<< "aio = " << aio_time.count() * 1e6 << " call = " << fn_time.count() * 1e6
<< std::endl;
return 0;
}

Original file line number Diff line number Diff line change
@@ -1207,7 +1207,8 @@ template <typename WarpShape,
typename RegularWarpIterator,
typename Policy,
typename Enable = void>
struct DefaultWarpIteratorAFromSharedMemory {};
struct DefaultWarpIteratorAFromSharedMemory {
};

// TensorOp - Ampere half
template <typename RegularWarpIterator, typename Policy>
9 changes: 5 additions & 4 deletions csrc/deepspeed4science/evoformer_attn/gemm_kernel_utils.h
Original file line number Diff line number Diff line change
@@ -125,10 +125,11 @@ struct CheckArch {
std::cerr << #PTR " is not correctly aligned\n"; \
return false; \
}
#define EVOFORMER_CHECK(COND, ERR) \
if (!(COND)) { \
std::cerr << "[Evoformer Attention]" << "'" #COND "' failed: " << ERR << "\n"; \
return false; \
#define EVOFORMER_CHECK(COND, ERR) \
if (!(COND)) { \
std::cerr << "[Evoformer Attention]" \
<< "'" #COND "' failed: " << ERR << "\n"; \
return false; \
}
#endif

Original file line number Diff line number Diff line change
@@ -12,7 +12,8 @@ namespace epilogue {
namespace threadblock {

template <class AccessType, class Enable = void>
struct atomic_store {};
struct atomic_store {
};

template <class AccessType>
struct atomic_store<AccessType,
2 changes: 1 addition & 1 deletion csrc/includes/simd.h
Original file line number Diff line number Diff line change
@@ -27,7 +27,7 @@ inline void writeAs(void* dst, const T& val)
std::memcpy(dst, &val, sizeof(T));
}

#define ROUND_DOWN(size, step) ((size) & ~((step) - 1))
#define ROUND_DOWN(size, step) ((size) & ~((step)-1))

#if defined(__AVX512__)
#define SIMD_STORE(a, d) _mm512_storeu_ps(a, d)
3 changes: 2 additions & 1 deletion csrc/xpu/adam/multi_tensor_apply.dp.hpp
Original file line number Diff line number Diff line change
@@ -112,7 +112,8 @@ class multi_tensor_apply_kernel {
// to make sure multi_tensor_apply_kernel can be used in sycl::buffer
namespace sycl {
template <typename T, typename U, typename... ArgTypes>
struct is_device_copyable<multi_tensor_apply_kernel<T, U, ArgTypes...>> : std::true_type {};
struct is_device_copyable<multi_tensor_apply_kernel<T, U, ArgTypes...>> : std::true_type {
};
} // namespace sycl

template <int depth, typename T, typename... ArgTypes>
3 changes: 2 additions & 1 deletion csrc/xpu/common/custom_cuda_kernel.dp.cpp
Original file line number Diff line number Diff line change
@@ -21,7 +21,8 @@ inline void has_capability_or_fail(const sycl::device& dev,
break;
default:
#define __SYCL_ASPECT(ASPECT, ID) \
case sycl::aspect::ASPECT: return #ASPECT;
case sycl::aspect::ASPECT: \
return #ASPECT;
#define __SYCL_ASPECT_DEPRECATED(ASPECT, ID, MESSAGE) __SYCL_ASPECT(ASPECT, ID)
#define __SYCL_ASPECT_DEPRECATED_ALIAS(ASPECT, ID, MESSAGE)
auto getAspectNameStr = [](sycl::aspect AspectNum) -> std::string {
2 changes: 1 addition & 1 deletion csrc/xpu/includes/simd.h
Original file line number Diff line number Diff line change
@@ -13,7 +13,7 @@
#define TILE (128 * 1024 * 1024)
#if defined(__AVX512__) or defined(__AVX256__)

#define ROUND_DOWN(size, step) ((size) & ~((step) - 1))
#define ROUND_DOWN(size, step) ((size) & ~((step)-1))

#if defined(__AVX512__)
#define SIMD_STORE(a, d) _mm512_storeu_ps(a, d)
10 changes: 5 additions & 5 deletions csrc/xpu/includes/type_shim.h
Original file line number Diff line number Diff line change
@@ -82,11 +82,11 @@
}

template <typename T>
__inline__ __attribute__((always_inline)) T
reduce_block_into_lanes(T* x,
T val,
int lanes = 1,
bool share_result = false) // lanes is intended to be <= 32.
__inline__ __attribute__((always_inline)) T reduce_block_into_lanes(
T* x,
T val,
int lanes = 1,
bool share_result = false) // lanes is intended to be <= 32.
{
auto item_ct1 = sycl::ext::oneapi::experimental::this_nd_item<3>();
int tid = item_ct1.get_local_id(2) + item_ct1.get_local_id(1) * item_ct1.get_local_range(2);
29 changes: 24 additions & 5 deletions deepspeed/moe/sharded_moe.py
Original file line number Diff line number Diff line change
@@ -292,7 +292,8 @@ def top2gating(logits: Tensor,
min_capacity: int,
drop_tokens: bool = True,
ep_group: Union[torch.distributed.ProcessGroup, None] = None,
top2_2nd_expert_sampling: bool = True) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
top2_2nd_expert_sampling: bool = True,
use_tutel: bool = False) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
"""Implements Top2Gating on logits."""
# everything is in fp32 in this function
gates = F.softmax(logits, dim=1)
@@ -313,8 +314,12 @@ def top2gating(logits: Tensor,
mask2 = F.one_hot(indices2_s, num_classes=num_experts)

# Compute locations in capacity buffer
locations1 = torch.cumsum(mask1, dim=0) - 1
locations2 = torch.cumsum(mask2, dim=0) - 1
if not use_tutel:
locations1 = torch.cumsum(mask1, dim=0) - 1
locations2 = torch.cumsum(mask2, dim=0) - 1
else:
locations1 = tutel_moe.fast_cumsum_sub_one(mask1)
locations2 = tutel_moe.fast_cumsum_sub_one(mask2)
# Update 2nd's location by accounting for locations of 1st
locations2 += torch.sum(mask1, dim=0, keepdim=True)

@@ -358,6 +363,19 @@ def top2gating(logits: Tensor,
gates1_s /= denom_s
gates2_s /= denom_s

if use_tutel:
# return critical information for tutel
return l_aux, capacity, num_experts, [
indices1_s,
indices2_s,
], [
locations1_s,
locations2_s,
], [
gates1_s,
gates2_s,
], exp_counts

# Calculate combine_weights and dispatch_mask
gates1 = einsum("s,se->se", gates1_s, mask1_float)
gates2 = einsum("s,se->se", gates2_s, mask2_float)
@@ -517,7 +535,8 @@ def forward(self,

elif self.k == 2:
gate_output = top2gating(logits, self.capacity_factor if self.training else self.eval_capacity_factor,
self.min_capacity, self.drop_tokens, self.ep_group, self.top2_2nd_expert_sampling)
self.min_capacity, self.drop_tokens, self.ep_group, self.top2_2nd_expert_sampling,
use_tutel)
else:
gate_output = topkgating(logits, self.k,
self.capacity_factor if self.training else self.eval_capacity_factor,
@@ -568,7 +587,7 @@ def __init__(self,
self.timers = SynchronizedWallClockTimer()
self.wall_clock_breakdown = False

self.use_tutel = use_tutel and TUTEL_INSTALLED and gate.k == 1
self.use_tutel = use_tutel and TUTEL_INSTALLED and (gate.k == 1 or gate.k == 2)

if self.use_tutel:
logger.info('Using Tutel optimizations.')