-
Notifications
You must be signed in to change notification settings - Fork 4.3k
/
Copy pathdeepspeed_py_copy.cpp
135 lines (109 loc) · 4.31 KB
/
deepspeed_py_copy.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0
// DeepSpeed Team
/*
Functionality for swapping tensors to/from (NVMe) storage devices.
*/
#include "deepspeed_py_copy.h"
#include <omp.h>
#define ROUND_DOWN(size, step) ((size) & ~((step)-1))
#if defined(__AVX512__) or defined(__AVX256__)
union AVX_Data {
#if defined(__AVX512__)
__m512 data;
#else
__m256 data;
#endif
};
#endif
static void helper_memcpy_1(float* dest, float* src, size_t param_size)
{
size_t rounded_size = 0;
#if defined(__AVX512__) or defined(__AVX256__)
rounded_size = ROUND_DOWN(param_size, SIMD_WIDTH);
for (size_t t = 0; t < rounded_size; t += TILE) {
size_t copy_size = TILE;
if ((t + TILE) > rounded_size) copy_size = rounded_size - t;
size_t offset = copy_size + t;
#pragma omp parallel for
for (size_t i = t; i < offset; i += SIMD_WIDTH) {
AVX_Data src_4;
src_4.data = SIMD_LOAD(src + i);
SIMD_STORE(dest + i, src_4.data);
}
}
#endif
if (param_size > rounded_size) {
#pragma omp parallel for
for (size_t k = rounded_size; k < param_size; k++) { dest[k] = src[k]; }
}
}
static void helper_memcpy_4(float* dest, float* src, size_t param_size)
{
size_t rounded_size = 0;
#if defined(__AVX512__) or defined(__AVX256__)
rounded_size = ROUND_DOWN(param_size, (SIMD_WIDTH << 2));
for (size_t t = 0; t < rounded_size; t += TILE) {
size_t copy_size = TILE;
if ((t + TILE) > rounded_size) copy_size = rounded_size - t;
size_t offset = copy_size + t;
#pragma omp parallel for
for (size_t i = t; i < offset; i += (SIMD_WIDTH << 2)) {
AVX_Data src_4[4];
src_4[0].data = SIMD_LOAD(src + i);
src_4[1].data = SIMD_LOAD(src + i + SIMD_WIDTH);
src_4[2].data = SIMD_LOAD(src + i + (SIMD_WIDTH << 1));
src_4[3].data = SIMD_LOAD(src + i + SIMD_WIDTH * 3);
SIMD_STORE(dest + i, src_4[0].data);
SIMD_STORE(dest + i + SIMD_WIDTH, src_4[1].data);
SIMD_STORE(dest + i + (SIMD_WIDTH << 1), src_4[2].data);
SIMD_STORE(dest + i + SIMD_WIDTH * 3, src_4[3].data);
}
}
#endif
if (param_size > rounded_size)
helper_memcpy_1((dest + rounded_size), (src + rounded_size), (param_size - rounded_size));
}
static void helper_mempcy_8(float* dest, float* src, size_t param_size)
{
size_t rounded_size = 0;
#if defined(__AVX512__) or defined(__AVX256__)
rounded_size = ROUND_DOWN(param_size, (SIMD_WIDTH << 2));
for (size_t t = 0; t < rounded_size; t += TILE) {
size_t copy_size = TILE;
if ((t + TILE) > rounded_size) copy_size = rounded_size - t;
size_t offset = copy_size + t;
#pragma omp parallel for
for (size_t i = t; i < offset; i += (SIMD_WIDTH << 3)) {
AVX_Data src_4[8];
src_4[0].data = SIMD_LOAD(src + i);
src_4[1].data = SIMD_LOAD(src + i + SIMD_WIDTH);
src_4[2].data = SIMD_LOAD(src + i + (SIMD_WIDTH << 1));
src_4[3].data = SIMD_LOAD(src + i + SIMD_WIDTH * 3);
src_4[4].data = SIMD_LOAD(src + i + (SIMD_WIDTH << 2));
src_4[5].data = SIMD_LOAD(src + i + SIMD_WIDTH * 5);
src_4[6].data = SIMD_LOAD(src + i + SIMD_WIDTH * 6);
src_4[7].data = SIMD_LOAD(src + i + SIMD_WIDTH * 7);
SIMD_STORE(dest + i, src_4[0].data);
SIMD_STORE(dest + i + SIMD_WIDTH, src_4[1].data);
SIMD_STORE(dest + i + (SIMD_WIDTH << 1), src_4[2].data);
SIMD_STORE(dest + i + SIMD_WIDTH * 3, src_4[3].data);
SIMD_STORE(dest + i + (SIMD_WIDTH << 2), src_4[4].data);
SIMD_STORE(dest + i + SIMD_WIDTH * 5, src_4[5].data);
SIMD_STORE(dest + i + SIMD_WIDTH * 6, src_4[6].data);
SIMD_STORE(dest + i + SIMD_WIDTH * 7, src_4[7].data);
}
}
#endif
if (param_size > rounded_size)
helper_memcpy_4((dest + rounded_size), (src + rounded_size), (param_size - rounded_size));
}
int deepspeed_py_memcpy(torch::Tensor& dest, const torch::Tensor& src)
{
auto dest_c = dest.contiguous();
auto src_c = src.contiguous();
float* dest_ptr = (float*)dest_c.data_ptr();
float* src_ptr = (float*)src_c.data_ptr();
helper_mempcy_8(dest_ptr, src_ptr, dest_c.size(0));
return 0;
}