Bearing Fault Detection and Classification Based on Temporal Convolutions and LSTM Network in Induction Machine Systems.
Downsampling | Sequence Length | Train (Samples) | Test (Samples) | Classes |
---|---|---|---|---|
Yes | 899 | 3095 | 890 | 16 |
No | 1000 | - | - | 16 |
Run | Epoch | Batch Size | Architecture | Weights | Downsampling | Accuracy |
---|---|---|---|---|---|---|
1 | 600 | 128 | #1 | 1 | Yes | 71.46% |
2 | 1200 | 128 | #1 | 2 | Yes | 84.26% |
3 | 1200 | 128 | #2 | 3 | Yes | 84.94% |
4 |
1200 | 128 | #3 | 4 | Yes | 87.52% |
5 | 900 | 64 | #1 | 5 | Yes | 83.37% |
_ | _ | _ | _ | _ | _ | _ |
6 | 200 | 128 | #4 | - | No | 71.35% |
7 | 500 | 128 | #4 | - | No | 94.65% |
8 | 650 | 128 | #4 | - | No | 95.37% |
9 | 700 | 128 | #4 | - | No | 95.48% |
10 | 900 | 128 | #4 | - | No | 95.62% |
11 |
1050 | 128 | #4 | - | No | 95.77% |
_ | _ | _ | _ | _ | _ | _ |
12 | 600 | #5 | - | No | 91.91% | |
13 |
850 | #5 | - | No | 93.70% |
|
14 | 1000 | #5 | - | No | 92.43% | |
15 | 1050 | #5 | - | No | 92.43% |
Conv1D(128) => Conv1D(128) => Conv1D(128) => Conv1D(64)
Conv1D(128) => Conv1D(256) => Conv1D(256) => Conv1D(64)
Conv1D(64) => Conv1D(128) => Conv1D(256) => Conv1D(64)
Conv1D(128) => Conv1D(128) => Conv1D(128) => Conv1D(64)
Conv1D(64) => Conv1D(64) => Conv1D(64) => Conv1D(128) => Conv1D(64)