Skip to content

Latest commit

 

History

History
executable file
·
56 lines (46 loc) · 1.74 KB

README.md

File metadata and controls

executable file
·
56 lines (46 loc) · 1.74 KB

Deep Learning

Bearing Fault Detection and Classification Based on Temporal Convolutions and LSTM Network in Induction Machine Systems.

GRU Results

Downsampling Sequence Length Train (Samples) Test (Samples) Classes
Yes 899 3095 890 16
No 1000 - - 16
Run Epoch Batch Size Architecture Weights Downsampling Accuracy
1 600 128 #1 1 Yes 71.46%
2 1200 128 #1 2 Yes 84.26%
3 1200 128 #2 3 Yes 84.94%
4 1200 128 #3 4 Yes 87.52%
5 900 64 #1 5 Yes 83.37%
_ _ _ _ _ _ _
6 200 128 #4 - No 71.35%
7 500 128 #4 - No 94.65%
8 650 128 #4 - No 95.37%
9 700 128 #4 - No 95.48%
10 900 128 #4 - No 95.62%
11 1050 128 #4 - No 95.77%
_ _ _ _ _ _ _
12 600 #5 - No 91.91%
13 850 #5 - No 93.70%
14 1000 #5 - No 92.43%
15 1050 #5 - No 92.43%

Downsampling (Yes)

#1 Architecture

Conv1D(128) => Conv1D(128) => Conv1D(128) => Conv1D(64)

#2 Architecture

Conv1D(128) => Conv1D(256) => Conv1D(256) => Conv1D(64)

#3 Architecture

Conv1D(64) => Conv1D(128) => Conv1D(256) => Conv1D(64)

Downsampling (No)

#4 Architecture

Conv1D(128) => Conv1D(128) => Conv1D(128) => Conv1D(64)

run-01 #4 Architecture Results

#5 Architecture

Conv1D(64) => Conv1D(64) => Conv1D(64) => Conv1D(128) => Conv1D(64)

run-02 #5 Architecture Results