Skip to content

Commit

Permalink
first commit
Browse files Browse the repository at this point in the history
  • Loading branch information
feiga committed Sep 12, 2015
1 parent 7725e55 commit f1a84ee
Show file tree
Hide file tree
Showing 31 changed files with 3,636 additions and 2 deletions.
23 changes: 23 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
The MIT License (MIT)

Copyright (c) Microsoft Corporation

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
54 changes: 54 additions & 0 deletions Makefile
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
PROJECT := $(shell readlink $(dir $(lastword $(MAKEFILE_LIST))) -f)

CXX = g++
CXXFLAGS = -O3 \
-std=c++11 \
-Wall \
-Wno-sign-compare \
-fno-omit-frame-pointer

MULTIVERSO_DIR = $(PROJECT)/multiverso
MULTIVERSO_INC = $(MULTIVERSO_DIR)/include
MULTIVERSO_LIB = $(MULTIVERSO_DIR)/lib
THIRD_PARTY_LIB = $(MULTIVERSO_DIR)/third_party/lib

INC_FLAGS = -I$(MULTIVERSO_INC)
LD_FLAGS = -L$(MULTIVERSO_LIB) -lmultiverso
LD_FLAGS += -L$(THIRD_PARTY_LIB) -lzmq -lmpi -lmpl

LIGHTLDA_HEADERS = $(shell find $(PROJECT)/src -type f -name "*.h")
LIGHTLDA_SRC = $(shell find $(PROJECT)/src -type f -name "*.cpp")
LIGHTLDA_OBJ = $(LIGHTLDA_SRC:.cpp=.o)

DUMP_BINARY_SRC = $(shell find $(PROJECT)/preprocess -type f -name "*.cpp")

BIN_DIR = $(PROJECT)/bin
LIGHTLDA = $(BIN_DIR)/lightlda
DUMP_BINARY = $(BIN_DIR)/dump_binary

all: path \
lightlda \
dump_binary

path: $(BIN_DIR)

$(BIN_DIR):
mkdir -p $@

$(LIGHTLDA): $(LIGHTLDA_OBJ)
$(CXX) $(LIGHTLDA_OBJ) $(CXXFLAGS) $(INC_FLAGS) $(LD_FLAGS) -o $@

$(LIGHTLDA_OBJ): %.o: %.cpp $(LIGHTLDA_HEADERS) $(MULTIVERSO_INC)
$(CXX) $(CXXFLAGS) $(INC_FLAGS) -c $< -o $@

$(DUMP_BINARY): $(DUMP_BINARY_SRC)
$(CXX) $(CXXFLAGS) $< -o $@

lightlda: path $(LIGHTLDA)

dump_binary: path $(DUMP_BINARY)

clean:
rm -rf $(BIN_DIR) $(LIGHTLDA_OBJ)

.PHONY: all path lightlda dump_binary clean
35 changes: 33 additions & 2 deletions README.md
100644 → 100755
Original file line number Diff line number Diff line change
@@ -1,2 +1,33 @@
# lightlda
Scalable, fast, and lightweight system for large-scale topic modeling
#LightLDA

LightLDA is a distributed system for large scale topic modeling. It implements a distributed sampler that enables very large data sizes and models. LightLDA improves sampling throughput and convergence speed via a fast O(1) metropolis-Hastings algorithm, and allows small cluster to tackle very large data and model sizes through model scheduling and data parallelism architecture. LightLDA is implemented with C++ for performance consideration.

We have sucessfully trained big topic models (with trillions of parameters) on big data (Top 10% PageRank values of Bing indexed page, containing billions of documents) in Microsoft. For more technical details, please refer to our [WWW'15 paper](http://www.www2015.it/documents/proceedings/proceedings/p1351.pdf).

##Why LightLDA

The highlight features of LightLDA are

* **Scalable**: LightLDA can train models with trillions of parameters on big data with billions of documents, a scale previous implementations cann't handle.
* **Fast**: The sampler can sample millions of tokens per second per multi-core node.
* **Lightweight**: Such big tasks can be trained with as few as tens of machines.

##Quick Start

Run ``` $./build.sh``` to build lightlda.


##Reference

Please cite LightLDA if it helps in your research:

```
@inproceedings{yuan2015lightlda,
title={LightLDA: Big Topic Models on Modest Computer Clusters},
author={Yuan, Jinhui and Gao, Fei and Ho, Qirong and Dai, Wei and Wei, Jinliang and Zheng, Xun and Xing, Eric Po and Liu, Tie-Yan and Ma, Wei-Ying},
booktitle={Proceedings of the 24th International Conference on World Wide Web},
pages={1351--1361},
year={2015},
organization={International World Wide Web Conferences Steering Committee}
}
```
12 changes: 12 additions & 0 deletions build.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
# build lightlda

git clone https://github.com/msraai/multiverso

cd multiverso
cd third_party
sh install.sh
cd ..
make -j4 all

cd ..
make -j4
23 changes: 23 additions & 0 deletions example/nytimes.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
#!/bin/bash

root=`pwd`
echo $root
bin=$root/../bin
dir=$root/data/nytimes

mkdir -p $dir
cd $dir

# 1. Download the data
wget https://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/docword.nytimes.txt.gz
gunzip $dir/docword.nytimes.txt.gz
wget https://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/vocab.nytimes.txt

# 2. UCI format to libsvm format
python $root/text2libsvm.py $dir/docword.nytimes.txt $dir/vocab.nytimes.txt $dir/nytimes.libsvm $dir/nytimes.word_id.dict

# 3. libsvm format to binary format
$bin/dump_binary $dir/nytimes.libsvm $dir/nytimes.word_id.dict $dir 0

# 4. Run LightLDA
$bin/lightlda -num_vocabs 111400 -num_topics 1000 -num_iterations 100 -alpha 0.1 -beta 0.01 -mh_steps 4 -num_local_workers 1 -num_blocks 1 -max_num_document 300000 -input_dir $dir -data_capacity 800
23 changes: 23 additions & 0 deletions example/pubmed.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
#!/bin/bash

root=`pwd`
echo $root
bin=$root/../bin
dir=$root/data/pubmed

mkdir -p $dir
cd $dir

# 1. Download the data
wget https://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/docword.pubmed.txt.gz
gunzip $dir/docword.pubmed.txt.gz
wget https://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/vocab.pubmed.txt

# 2. UCI format to libsvm format
python $root/text2libsvm.py $dir/docword.pubmed.txt $dir/vocab.pubmed.txt $dir/pubmed.libsvm $dir/pubmed.word_id.dict

# 3. libsvm format to binary format
$bin/dump_binary $dir/pubmed.libsvm $dir/pubmed.word_id.dict $dir 0

# 4. Run LightLDA
$bin/lightlda -num_vocabs 144400 -num_topics 1000 -num_iterations 100 -alpha 0.1 -beta 0.01 -mh_steps 4 -num_local_workers 1 -num_blocks 1 -max_num_document 8300000 -input_dir $dir -data_capacity 6200
58 changes: 58 additions & 0 deletions example/text2libsvm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
"""
This script is for converting UCI format docword and vocab file to libsvm format data and dict
(How to run)
python text2libsvm.py <docword.input> <vocab.input> <libsvm.output> <dict.output>
"""

import sys

if len(sys.argv) != 5:
print "Usage: python text2libsvm.py <docword.input> <vocab.input> <libsvm.output> <dict.output>"
exit(1)

data_file = open(sys.argv[1], 'r')
vocab_file = open(sys.argv[2], 'r')

libsvm_file = open(sys.argv[3], 'w')
dict_file = open(sys.argv[4], 'w')

word_dict = {}
vocab_dict = []
doc = ""
last_doc_id = 0

line = vocab_file.readline()
while line:
vocab_dict.append(line.strip())
line = vocab_file.readline()

line = data_file.readline()
while line:
col = line.strip().split(' ')
if len(col) == 3:
doc_id = int(col[0])
word_id = int(col[1]) - 1
word_count = int(col[2])
if not word_dict.has_key(word_id):
word_dict[word_id] = 0
word_dict[word_id] += word_count
if doc_id != last_doc_id:
if doc != "":
libsvm_file.write(doc.strip() + '\n')
doc = str(doc_id) + '\t'
doc += str(word_id) + ':' + str(word_count) + ' '
last_doc_id = doc_id
line = data_file.readline()

if doc != "":
libsvm_file.write(doc.strip() + '\n')

libsvm_file.close()

for word in word_dict:
line = '\t'.join([str(word), vocab_dict[word], str(word_dict[word])]) + '\n'
dict_file.write(line)

Loading

0 comments on commit f1a84ee

Please sign in to comment.