Skip to content

Commit

Permalink
First commit
Browse files Browse the repository at this point in the history
  • Loading branch information
xirdneh committed May 23, 2016
0 parents commit 53f0bab
Show file tree
Hide file tree
Showing 12 changed files with 1,335 additions and 0 deletions.
73 changes: 73 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
# ignore the populated environment file so as not to commit secrets!
.idea/
designsafe.env
certs/
node_modules/
datadump.json
db.sqlite3*

####
#
# Below is the Github-provided python .gitignore file
#
####

# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class

# C extensions
*.so

# Distribution / packaging
.Python
env/
build/
develop-eggs/
#dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
*.egg-info/
.installed.cfg
*.egg

# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec

# Installer logs
pip-log.txt
pip-delete-this-directory.txt

# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*,cover

# Translations
*.mo
*.pot

# Django stuff:
*.log
db.sqlite3

# Sphinx documentation
docs/_build/

# PyBuilder
target/
21 changes: 21 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
The MIT License (MIT)

Copyright (c) 2016 Josue Balandrano Coronel

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
31 changes: 31 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
# LiveQA submission for TREC-2016

**Introduction**

This project is based on the [TREC-2016 track LiveQA](https://sites.google.com/site/trecliveqa2016/call-for-participation).
In the heart of it uses Latent Dirichlet Allocation (LDA) to infer the semantic topics and uses this model to construct
a probability distribution for each of the retrieved documents from the knowledge base. Finally the Jensen-Shannon
Distance (JSD) is calculated to have a symilarity measure and the most similar answer is selected as the returned answer.
The knowledge base used right now is the yahoo answers database.

Leverages on:

- [beautifulsoup4](https://www.crummy.com/software/BeautifulSoup/bs4/doc/)
- [scipy](https://pypi.python.org/pypi/scipy)
- [numpy](https://pypi.python.org/pypi/numpy)
- [nltk](http://www.nltk.org/)
- [gensim](http://radimrehurek.com/gensim/)

## Future Work

* [ ] Add more resources other than YahooAnswers.
* [ ] Improve query construction when searching for candidate question/answer tuples.
* [ ] Add more similarity metrics (aggregation, semantic).
* [ ] Improve NLP processing.
* [ ] Add multi-document summarization when possible.

## References

- [TREC-2016 track LiveQA](https://sites.google.com/site/trecliveqa2016/call-for-participation)
- [Blei et al. Latent Dirichlet Allocation](http://www.cs.princeton.edu/~blei/papers/BleiNgJordan2003.pdf)
- [Gensim LDA implementation](https://github.com/piskvorky/gensim/blob/develop/gensim/models/ldamodel.py)
Empty file added __init__.py
Empty file.
Empty file added liveqa/__init__.py
Empty file.
42 changes: 42 additions & 0 deletions liveqa/nltk_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
from nltk.stem.wordnet import WordNetLemmatizer
import nltk
import re

def preprocess_text(text):
text = text.lower()
text = re.sub(r'https?:\/\/[.\s]*', ' ', text, flags=re.MULTILINE)
text = re.sub(r'[^\w\s\-_]+', ' ', text, flags=re.MULTILINE)
text = re.sub(r'\s+', ' ', text, flags=re.MULTILINE)
#text = re.sub(r'\W\s[\d]{1,3}\s', ' ', text, flags=re.MULTILINE)
text = text.encode('utf-8')
return text

def get_word_lists(documents):
"""
Use also to preprocess any string.
text = get_word_lists([data])[0]
"""
word_lists = []
for d in documents:
tokens = tokenize(d)
tokens = remove_stop_words(tokens)
word_lists.append(tokens)
return word_lists

def tokenize(text):
tokens = nltk.word_tokenize(text)
return tokens

def is_int(s):
try:
int(s)
return True
except ValueError:
return False

def remove_stop_words(tokens_list):
stopwords = nltk.corpus.stopwords.words('english')
stopwords += ['http', 'https', 'img', 'src', 'href', 'alt']
lmtz = WordNetLemmatizer()
filtered_words = [lmtz.lemmatize(w) for w in tokens_list if w not in stopwords and (is_int(w) or len(w) > 1)]
return filtered_words
151 changes: 151 additions & 0 deletions liveqa/qs_proc.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
from bs4 import BeautifulSoup
from time import time
from . import nltk_utils
import threading
import requests
import logging
import urllib2
import urllib
import json

logger = logging.getLogger(__name__)
ya_domain = 'https://answers.yahoo.com'
ya_search = 'https://answers.yahoo.com/search/search_result?p='
ya_new = 'https://answers.yahoo.com/dir/index/answer'
ya_list = 'https://answers.yahoo.com/dir/index/discover'

def get_question_details(q_url):
response = requests.get(q_url)
html = response.text
soup = BeautifulSoup(html, 'html5lib')
q_det = soup.find('div', id='ya-question-detail')
title = q_det.h1.get_text()
#q_det = q_det.find_all('div')
body = q_det.find('span', class_='ya-q-full-text') or q_det.find('span', class_='ya-q-text')
if body:
body = body.get_text()
else:
body = ''
best_answer = soup.find('div', id='ya-best-answer') or ''
if best_answer:
best_answer = best_answer.find('span', class_='ya-q-full-text').get_text()

answers_ul = soup.find('ul', id='ya-qn-answers')
answers = []
if answers_ul:
answers_lis = answers_ul.find_all('li')
answers = []
for answer in answers_lis:
answer_dets = answer.select('.answer-detail')
text = answer_dets[0].get_text()
upvotes = answer_dets[1].select('[itemprop="upvoteCount"]')[0].get_text()
upvotes = int(upvotes)
answers.append({'answer': text, 'upvotes': upvotes})
answers = sorted(answers, key=lambda x: x['upvotes'], reverse=True)
if not best_answer:
if answers:
best_answer = answers[0]['answer']
answers = answers[1:]
return {'title': title, 'body': body, 'best_answer': best_answer, 'answers': answers, 'url': q_url}


def question_to_document(q):
doc = q['title'] + ' ' + q['body'] + ' ' + q['best_answer']
at = ''
for answer in q['answers']:
at += ' ' + answer['answer']
return doc + ' ' + at

def get_newest_question():
response = urllib2.urlopen('https://answers.yahoo.com/dir/index/answer', timeout=10)
html = response.read()
soup = BeautifulSoup(html, 'html5lib')
questions = soup.find('ul', id='ya-answer-tab')
q_url = ya_domain + questions.li.h3.a['href']
return q_url

def search(q, q_url, dictionary):
cnt = 0
q_split = []
qs_lis = []
for w in q.split():
freq = dictionary.dfs.get(dictionary.token2id.get(w, ''), 0)
q_split.append((w, freq))
q_split = sorted(q_split, key=lambda x: x[1], reverse=True)
cnt_max = len(q_split) * 2
p = 1
bw = False
qid = q_url.split('qid=')[1].strip()
while not bw:
logger.debug('YA Search Q: %s &s=%s' % (q, p))
s_url = ya_search + urllib.quote(q)
if p > 1:
s_url += '&s=%d' % p
response = urllib2.urlopen(s_url, timeout=10)
html = response.read()
soup = BeautifulSoup(html, 'html5lib')
qs = soup.find('ul', id = 'yan-questions')
lis = qs.find_all('li')
qs_lis += lis
#print 'len qs_lis {}'.format(len(qs_lis))
if len(qs_lis) >= 50 or cnt >= cnt_max:
bw = True
if len(lis) < 10 and p == 1 and len(q_split) >= 3:
#print 'fixing q'
q = ' '.join([w for w in q.split() if w != q_split[-1][0]])
q_split.pop()
p = 0
elif len(lis) < 10:
bw = True
cnt += 1
p += 1
seen = set()
ret = []
for li in qs_lis:
url = ya_domain + li.a['href']
ref_qid = url.split('qid=')[1]
#print 'qid: {} == ref_qid: {}. {}'.format(qid, ref_qid, qid == ref_qid)
if qid == ref_qid or ref_qid in seen:
continue
seen.add(ref_qid)
ret.append(url)
return ret

def search_questions(q, q_url, dictionary):
urls = search(q, q_url, dictionary)
qs_dets = [{}] * len(urls)
t0 = time()
threads = []
no_threads = 10
print 'url len: {}'.format(len(urls))
for i in range(len(urls)):
t = QThread(i, urls[i], qs_dets)
threads.append(t)

for j in range(len(threads) / no_threads):
offset = no_threads * j
end = offset + no_threads
if offset + no_threads > len(urls):
end = len(urls)
for t in threads[offset:end]:
t.start()
for t in threads[offset:end]:
t.join()
t1 = time()
print 'Time fetchings candidates qs: {}'.format(t1 - t0)
return qs_dets

class QThread(threading.Thread):
def __init__(self, _id, url, texts, *args, **kwargs):
threading.Thread.__init__(self)
self._id = _id
self.url = url
self.texts = texts

def _get_art(self, url):
return get_question_details(url)

def run(self):
det = self._get_art(self.url)
self.texts[self._id] = det

74 changes: 74 additions & 0 deletions liveqa/websearch.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
from requests.auth import HTTPBasicAuth
from bs4 import BeautifulSoup
from . import nltk_utils
from time import time
import threading
import requests
import urllib2
import urllib
import json

bing_api = 'https://api.datamarket.azure.com/Bing/SearchWeb/v1/Web?$format=json&Query='
bing_key = 'IgVbvvtgQVYI7Yfu9hPgVx0Tmbih1gq5lFOXaIQH4f8'
user_agent = 'Mozilla/5.0 (Linux; Android 4.0.4; Galaxy Nexus Build/IMM76B) AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.133 Mobile Safari/535.19'

def search(q, q_url):
search_url = bing_api + urllib.quote(q)
print 'Search Url: %s\n' % search_url
try:
response = requests.get(search_url, auth=HTTPBasicAuth(bing_key, bing_key))
results = response.json()['d']['results']
urls = []
for r in results:
if r['Url'] != q_url:
urls.append(r['Url'])
if len(urls) >= 20:
return urls[:20]
else:
return urls
except Exception as e:
print e
#print response.text
traceback.print_exc(file=sys.stdout)

class URLThread(threading.Thread):
def __init__(self, _id, url, texts, *args, **kwargs):
threading.Thread.__init__(self)
self._id = _id
self.url = url
self.texts = texts

def _get_art(self, url):
#print 'requesting: {}'.format(url)
req = urllib2.Request(url, headers={'User-Agent': user_agent})
response = urllib2.urlopen(req, timeout=10)
html = response.read()
soup = BeautifulSoup(html, 'html5lib')
[s.extract() for s in soup(['script', 'a', 'rel', 'style', 'img', 'link', 'style'])]
text = soup.get_text()
text = nltk_utils.preprocess_text(text)
return text

def run(self):
txt = self._get_art(self.url)
self.texts[self._id] = txt

def get_articles(urls):
corpus = [''] * len(urls)
t0 = time()
threads = []
no_threads = 10
print 'url len: {}'.format(len(urls))
for i in range(len(urls)):
t = URLThread(i, urls[i], corpus)
threads.append(t)

for j in range(len(threads) / no_threads):
offset = no_threads * j
for t in threads[offset:offset +no_threads]:
t.start()
for t in threads[offset:offset + no_threads]:
t.join()
t1 = time()
print 'Time fetching urls: {}'.format(t1 - t0)
return corpus
Loading

0 comments on commit 53f0bab

Please sign in to comment.