Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix mapping of MAP types with boolean or integer keys #441

Merged
merged 3 commits into from
Jan 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
87 changes: 82 additions & 5 deletions tests/integration/test_types_integration.py
Original file line number Diff line number Diff line change
Expand Up @@ -794,14 +794,91 @@ def test_array(trino_connection):


def test_map(trino_connection):
# primitive types
(
SqlTest(trino_connection)
.add_field(sql="CAST(null AS MAP(VARCHAR, INTEGER))", python=None)
.add_field(sql="MAP()", python={})
.add_field(sql="MAP(ARRAY[true, false], ARRAY[false, true])", python={True: False, False: True})
.add_field(sql="MAP(ARRAY[true, false], ARRAY[true, null])", python={True: True, False: None})
.add_field(sql="MAP(ARRAY[1, 2], ARRAY[1, null])", python={1: 1, 2: None})
.add_field(sql="MAP("
"ARRAY[CAST('NaN' AS REAL), CAST('-Infinity' AS REAL), CAST(3.4028235E38 AS REAL), CAST(1.4E-45 AS REAL), CAST('Infinity' AS REAL), CAST(1 AS REAL)], " # noqa: E501
"ARRAY[CAST('NaN' AS REAL), CAST('-Infinity' AS REAL), CAST(3.4028235E38 AS REAL), CAST(1.4E-45 AS REAL), CAST('Infinity' AS REAL), null])", # noqa: E501
python={math.nan: math.nan,
-math.inf: -math.inf,
3.4028235e+38: 3.4028235e+38,
1.4e-45: 1.4e-45,
math.inf: math.inf,
1: None},
has_nan=True)
.add_field(sql="MAP("
"ARRAY[CAST('NaN' AS DOUBLE), CAST('-Infinity' AS DOUBLE), CAST(1.7976931348623157E308 AS DOUBLE), CAST(4.9E-324 AS DOUBLE), CAST('Infinity' AS DOUBLE), CAST(1 AS DOUBLE)], " # noqa: E501
"ARRAY[CAST('NaN' AS DOUBLE), CAST('-Infinity' AS DOUBLE), CAST(1.7976931348623157E308 AS DOUBLE), CAST(4.9E-324 AS DOUBLE), CAST('Infinity' AS DOUBLE), null])", # noqa: E501
python={math.nan: math.nan,
-math.inf: -math.inf,
1.7976931348623157e+308: 1.7976931348623157e+308,
5e-324: 5e-324,
math.inf: math.inf,
1: None},
has_nan=True)
.add_field(sql="MAP(ARRAY[CAST('NaN' AS DOUBLE)], ARRAY[CAST('NaN' AS DOUBLE)])",
python={math.nan: math.nan},
has_nan=True)
.add_field(sql="MAP(ARRAY[1.2, 2.4, 4.8], ARRAY[1.2, 2.4, null])",
python={Decimal("1.2"): Decimal("1.2"), Decimal("2.4"): Decimal("2.4"), Decimal("4.8"): None})
.add_field(sql="MAP("
"ARRAY[CAST('hello' AS VARCHAR), CAST('null' AS VARCHAR)], "
"ARRAY[CAST('hello' AS VARCHAR), null])",
python={'hello': 'hello', 'null': None})
.add_field(sql="MAP(ARRAY[CAST('a' AS CHAR(4)), CAST('null' AS CHAR(4))], ARRAY[CAST('a' AS CHAR), null])",
python={'a ': 'a', 'null': None})
.add_field(sql="MAP(ARRAY[X'', X'65683F', X'00'], ARRAY[X'', X'65683F', null])",
python={b'': b'', b'eh?': b'eh?', b'\x00': None})
.add_field(sql="MAP(ARRAY[JSON '1', JSON '{}', JSON 'null'], ARRAY[JSON '1', JSON '{}', null])",
python={'1': '1', '{}': '{}', 'null': None})
).execute()

# temporal types
tz_india = create_timezone("+05:30")
tz_new_york = create_timezone("-05:00")
tz_los_angeles = create_timezone("America/Los_Angeles")
time_1 = time(1, 1, 1)
time_2 = time(23, 59, 59)
datetime_1 = datetime(1970, 1, 1, 1, 1, 1)
datetime_2 = datetime(2023, 1, 1, 23, 59, 59)
SqlTest(trino_connection) \
.add_field(sql="CAST(null AS MAP(VARCHAR, INTEGER))", python=None) \
.add_field(sql="MAP(ARRAY['a', 'b'], ARRAY[1, null])", python={'a': 1, 'b': None}) \
.add_field(sql="MAP(ARRAY['a', 'b'], ARRAY[2.4, null])", python={'a': Decimal("2.4"), 'b': None}) \
.add_field(sql="MAP(ARRAY[2.4, 4.8], ARRAY[CAST(4.9E-324 AS DOUBLE), null])",
python={Decimal("2.4"): 5e-324, Decimal("4.8"): None}) \
.add_field(sql="MAP(ARRAY[DATE '1970-01-01', DATE '2023-01-01'], ARRAY[DATE '1970-01-01', null])",
python={date(1970, 1, 1): date(1970, 1, 1), date(2023, 1, 1): None}) \
.add_field(sql="MAP(ARRAY[TIME '01:01:01', TIME '23:59:59'], ARRAY[TIME '01:01:01', null])",
python={time_1: time_1, time_2: None}) \
.add_field(sql="MAP("
"ARRAY[TIME '01:01:01 +05:30', TIME '23:59:59 -05:00'], "
"ARRAY[TIME '01:01:01 +05:30', null])",
python={time_1.replace(tzinfo=tz_india): time_1.replace(tzinfo=tz_india),
time_2.replace(tzinfo=tz_new_york): None}) \
.add_field(sql="MAP("
"ARRAY[TIMESTAMP '1970-01-01 01:01:01', TIMESTAMP '2023-01-01 23:59:59'], "
"ARRAY[TIMESTAMP '1970-01-01 01:01:01', null])",
python={datetime_1: datetime_1, datetime_2: None}) \
.add_field(sql="MAP("
"ARRAY[TIMESTAMP '1970-01-01 01:01:01 +05:30', TIMESTAMP '2023-01-01 23:59:59 America/Los_Angeles'], " # noqa: E501
"ARRAY[TIMESTAMP '1970-01-01 01:01:01 +05:30', null])",
python={datetime_1.replace(tzinfo=tz_india): datetime_1.replace(tzinfo=tz_india),
datetime_2.replace(tzinfo=tz_los_angeles): None}) \
.execute()

# structural types - note that none of these below tests work in the Trino JDBC Driver either.
# TODO: https://github.com/trinodb/trino-python-client/issues/442
# Unhashable types like lists and dicts cannot be used as keys so these values cannot be represented as Python
# objects at all.
# .add_field(sql="MAP(ARRAY[ARRAY[1, 2]], ARRAY[null])", python={[1, 2]: None})
# .add_field(sql="MAP(ARRAY[MAP(ARRAY[1], ARRAY[2])], ARRAY[null])", python={{1: 2}: None})

# TODO: fails because server sends [[{"[1, 2]":null}]] as response whereas it sends [[[1,2]]] as response for ROW
# types that are not enclosed in a MAP while the RowValueMapper expects values to be lists.
# .add_field(sql="MAP(ARRAY[ROW(1, 2)], ARRAY[CAST(null AS VARCHAR)])", python={(1, 2): None})


def test_row(trino_connection):
SqlTest(trino_connection) \
Expand Down
38 changes: 38 additions & 0 deletions trino/mapper.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,29 @@ def map(self, value: Any) -> Optional[T]:
pass


class BooleanValueMapper(ValueMapper[bool]):
def map(self, value: Any) -> Optional[bool]:
if value is None:
return None
if isinstance(value, bool):
return value
if str(value).lower() == 'true':
return True
if str(value).lower() == 'false':
return False
Comment on lines +40 to +43
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

is there a way to avoid this and return map keys as boolean instead?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Technically yes, but it's much harder to do on server. There's already some code FixJsonDataUtils which tries to handle some of this but it doesn't work well or is easy to do for structural types.

raise ValueError(f"Server sent unexpected value {value} of type {type(value)} for boolean")


class IntegerValueMapper(ValueMapper[int]):
def map(self, value: Any) -> Optional[int]:
if value is None:
return None
if isinstance(value, int):
return value
# int(3.1) == 3 but server won't send such values for integer types
return int(value)


class DoubleValueMapper(ValueMapper[float]):
def map(self, value) -> Optional[float]:
if value is None:
Expand All @@ -51,6 +74,13 @@ def map(self, value) -> Optional[Decimal]:
return Decimal(value)


class StringValueMapper(ValueMapper[str]):
def map(self, value: Any) -> Optional[str]:
if value is None:
return None
return str(value)


class BinaryValueMapper(ValueMapper[bytes]):
def map(self, value) -> Optional[bytes]:
if value is None:
Expand Down Expand Up @@ -221,12 +251,20 @@ def _create_value_mapper(self, column) -> ValueMapper:
col_type = column['rawType']

# primitive types
if col_type == 'boolean':
return BooleanValueMapper()
if col_type in {'tinyint', 'smallint', 'integer', 'bigint'}:
return IntegerValueMapper()
if col_type in {'double', 'real'}:
return DoubleValueMapper()
if col_type == 'decimal':
return DecimalValueMapper()
if col_type in {'varchar', 'char'}:
return StringValueMapper()
if col_type == 'varbinary':
return BinaryValueMapper()
if col_type == 'json':
return StringValueMapper()
if col_type == 'date':
return DateValueMapper()
if col_type == 'time':
Expand Down