Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add accessor protocol support and refactor stats/base/nanmeanors #6493

Open
wants to merge 3 commits into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
65 changes: 27 additions & 38 deletions lib/node_modules/@stdlib/stats/base/nanmeanors/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -51,78 +51,67 @@ The [arithmetic mean][arithmetic-mean] is defined as
var nanmeanors = require( '@stdlib/stats/base/nanmeanors' );
```

#### nanmeanors( N, x, stride )
#### nanmeanors( N, x, strideX )

Computes the [arithmetic mean][arithmetic-mean] of a strided array `x`, ignoring `NaN` values and using ordinary recursive summation.

```javascript
var x = [ 1.0, -2.0, NaN, 2.0 ];
var N = x.length;

var v = nanmeanors( N, x, 1 );
var v = nanmeanors( 4, x, 1 );
// returns ~0.3333
```

The function has the following parameters:

- **N**: number of indexed elements.
- **x**: input [`Array`][mdn-array] or [`typed array`][mdn-typed-array].
- **stride**: index increment for `x`.
- **strideX**: stride length for `x`.

The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [arithmetic mean][arithmetic-mean] of every other element in `x`,
The `N` and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the [arithmetic mean][arithmetic-mean] of every other element in `x`,

```javascript
var floor = require( '@stdlib/math/base/special/floor' );
var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN, NaN ];

var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ];
var N = floor( x.length / 2 );

var v = nanmeanors( N, x, 2 );
var v = nanmeanors( 5, x, 2 );
// returns 1.25
```

Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views.

<!-- eslint-disable stdlib/capitalized-comments -->
<!-- eslint-disable stdlib/capitalized-comments, max-len -->

```javascript
var Float64Array = require( '@stdlib/array/float64' );
var floor = require( '@stdlib/math/base/special/floor' );

var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

var N = floor( x0.length / 2 );

var v = nanmeanors( N, x1, 2 );
var v = nanmeanors( 5, x1, 2 );
// returns 1.25
```

#### nanmeanors.ndarray( N, x, stride, offset )
#### nanmeanors.ndarray( N, x, strideX, offsetX )

Computes the [arithmetic mean][arithmetic-mean] of a strided array, ignoring `NaN` values and using ordinary recursive summation and alternative indexing semantics.

```javascript
var x = [ 1.0, -2.0, NaN, 2.0 ];
var N = x.length;

var v = nanmeanors.ndarray( N, x, 1, 0 );
var v = nanmeanors.ndarray( 4, x, 1, 0 );
// returns ~0.33333
```

The function has the following additional parameters:

- **offset**: starting index for `x`.
- **offsetX**: starting index for `x`.

While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [arithmetic mean][arithmetic-mean] for every other value in `x` starting from the second value
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the [arithmetic mean][arithmetic-mean] for every other value in `x` starting from the second value

```javascript
var floor = require( '@stdlib/math/base/special/floor' );
var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ];

var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ];
var N = floor( x.length / 2 );

var v = nanmeanors.ndarray( N, x, 2, 1 );
var v = nanmeanors.ndarray( 5, x, 2, 1 );
// returns 1.25
```

Expand All @@ -137,6 +126,7 @@ var v = nanmeanors.ndarray( N, x, 2, 1 );
- If `N <= 0`, both functions return `NaN`.
- If every indexed element is `NaN`, both functions return `NaN`.
- Ordinary recursive summation (i.e., a "simple" sum) is performant, but can incur significant numerical error. If performance is paramount and error tolerated, using ordinary recursive summation to compute an arithmetic mean is acceptable; in all other cases, exercise due caution.
- Both functions support array-like objects having getter and setter accessors for array element access (e.g., [`@stdlib/array/base/accessor`][@stdlib/array/base/accessor]).
- Depending on the environment, the typed versions ([`dnanmeanors`][@stdlib/stats/strided/dnanmeanors], [`snanmeanors`][@stdlib/stats/strided/snanmeanors], etc.) are likely to be significantly more performant.

</section>
Expand All @@ -150,22 +140,19 @@ var v = nanmeanors.ndarray( N, x, 2, 1 );
<!-- eslint no-undef: "error" -->

```javascript
var randu = require( '@stdlib/random/base/randu' );
var round = require( '@stdlib/math/base/special/round' );
var Float64Array = require( '@stdlib/array/float64' );
var uniform = require( '@stdlib/random/base/uniform' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var bernoulli = require( '@stdlib/random/base/bernoulli' );
var nanmeanors = require( '@stdlib/stats/base/nanmeanors' );

var x;
var i;

x = new Float64Array( 10 );
for ( i = 0; i < x.length; i++ ) {
if ( randu() < 0.2 ) {
x[ i ] = NaN;
} else {
x[ i ] = round( (randu()*100.0) - 50.0 );
function rand() {
if ( bernoulli( 0.8 ) < 1 ) {
return NaN;
}
return uniform( -50.0, 50.0 );
}

var x = filledarrayBy( 10, 'generic', rand );
console.log( x );

var v = nanmeanors( x.length, x, 1 );
Expand Down Expand Up @@ -219,6 +206,8 @@ console.log( v );

[@stdlib/stats/strided/snanmeanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/snanmeanors

[@stdlib/array/base/accessor]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/array/base/accessor

<!-- </related-links> -->

</section>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,15 +21,30 @@
// MODULES //

var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var uniform = require( '@stdlib/random/base/uniform' );
var bernoulli = require( '@stdlib/random/base/bernoulli' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var pkg = require( './../package.json' ).name;
var nanmeanors = require( './../lib/nanmeanors.js' );
var nanmeanors = require( './../lib/main.js' );


// FUNCTIONS //

/**
* Returns a random value or `NaN`.
*
* @private
* @returns {number} random number or `NaN`
*/
function rand() {
if ( bernoulli( 0.8 ) < 1 ) {
return NaN;
}
return uniform( -10.0, 10.0 );
}

/**
* Creates a benchmark function.
*
Expand All @@ -38,17 +53,7 @@ var nanmeanors = require( './../lib/nanmeanors.js' );
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var x;
var i;

x = [];
for ( i = 0; i < len; i++ ) {
if ( randu() < 0.2 ) {
x.push( NaN );
} else {
x.push( ( randu()*20.0 ) - 10.0 );
}
}
var x = filledarrayBy( len, 'generic', rand );
return benchmark;

function benchmark( b ) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,9 @@
// MODULES //

var bench = require( '@stdlib/bench' );
var randu = require( '@stdlib/random/base/randu' );
var uniform = require( '@stdlib/random/base/uniform' );
var bernoulli = require( '@stdlib/random/base/bernoulli' );
var filledarrayBy = require( '@stdlib/array/filled-by' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var pkg = require( './../package.json' ).name;
Expand All @@ -30,6 +32,19 @@ var nanmeanors = require( './../lib/ndarray.js' );

// FUNCTIONS //

/**
* Returns a random value or `NaN`.
*
* @private
* @returns {number} random number or `NaN`
*/
function rand() {
if ( bernoulli( 0.8 ) < 1 ) {
return NaN;
}
return uniform( -10.0, 10.0 );
}

/**
* Creates a benchmark function.
*
Expand All @@ -38,17 +53,7 @@ var nanmeanors = require( './../lib/ndarray.js' );
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var x;
var i;

x = [];
for ( i = 0; i < len; i++ ) {
if ( randu() < 0.2 ) {
x.push( NaN );
} else {
x.push( ( randu()*20.0 ) - 10.0 );
}
}
var x = filledarrayBy( len, 'generic', rand );
return benchmark;

function benchmark( b ) {
Expand Down
42 changes: 19 additions & 23 deletions lib/node_modules/@stdlib/stats/base/nanmeanors/docs/repl.txt
Original file line number Diff line number Diff line change
@@ -1,10 +1,10 @@

{{alias}}( N, x, stride )
{{alias}}( N, x, strideX )
Computes the arithmetic mean of a strided array, ignoring `NaN` values and
using ordinary recursive summation.

The `N` and `stride` parameters determine which elements in `x` are accessed
at runtime.
The `N` and stride parameters determine which elements in the strided array
are accessed at runtime.

Indexing is relative to the first index. To introduce an offset, use a typed
array view.
Expand All @@ -21,8 +21,8 @@
x: Array<number>|TypedArray
Input array.

stride: integer
Index increment.
strideX: integer
Stride length.

Returns
-------
Expand All @@ -33,25 +33,22 @@
--------
// Standard Usage:
> var x = [ 1.0, -2.0, NaN, 2.0 ];
> {{alias}}( x.length, x, 1 )
> {{alias}}( 4, x, 1 )
~0.3333

// Using `N` and `stride` parameters:
> x = [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0, NaN ];
> var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
> var stride = 2;
> {{alias}}( N, x, stride )
// Using `N` and stride parameters:
> x = [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0, NaN, NaN ];
> {{alias}}( 4, x, 2 )
~0.3333

// Using view offsets:
> var x0 = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN ] );
> var x0 = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN, NaN ] );
> var x1 = new {{alias:@stdlib/array/float64}}( x0.buffer, x0.BYTES_PER_ELEMENT*1 );
> N = {{alias:@stdlib/math/base/special/floor}}( x0.length / 2 );
> stride = 2;
> {{alias}}( N, x1, stride )
> {{alias}}( 4, x1, 2 )
~-0.3333

{{alias}}.ndarray( N, x, stride, offset )

{{alias}}.ndarray( N, x, strideX, offsetX )
Computes the arithmetic mean of a strided array, ignoring `NaN` values and
using ordinary recursive summation and alternative indexing semantics.

Expand All @@ -67,10 +64,10 @@
x: Array<number>|TypedArray
Input array.

stride: integer
Index increment.
strideX: integer
Stride length.

offset: integer
offsetX: integer
Starting index.

Returns
Expand All @@ -82,13 +79,12 @@
--------
// Standard Usage:
> var x =[ 1.0, -2.0, NaN, 2.0 ];
> {{alias}}.ndarray( x.length, x, 1, 0 )
> {{alias}}.ndarray( 4, x, 1, 0 )
~0.3333

// Using offset parameter:
> var x = [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN ];
> var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
> {{alias}}.ndarray( N, x, 2, 1 )
> var x = [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0, NaN, NaN ];
> {{alias}}.ndarray( 4, x, 2, 1 )
~-0.3333

See Also
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,12 @@

/// <reference types="@stdlib/types"/>

import { NumericArray } from '@stdlib/types/array';
import { NumericArray, Collection, AccessorArrayLike } from '@stdlib/types/array';

/**
* Input array.
*/
type InputArray = NumericArray | Collection<number> | AccessorArrayLike<number>;

/**
* Interface describing `nanmeanors`.
Expand All @@ -31,7 +36,7 @@ interface Routine {
*
* @param N - number of indexed elements
* @param x - input array
* @param stride - stride length
* @param strideX - stride length
* @returns arithmetic mean
*
* @example
Expand All @@ -40,15 +45,15 @@ interface Routine {
* var v = nanmeanors( x.length, x, 1 );
* // returns ~0.3333
*/
( N: number, x: NumericArray, stride: number ): number;
( N: number, x: InputArray, strideX: number ): number;

/**
* Computes the arithmetic mean of a strided array, ignoring `NaN` values and using ordinary recursive summation and alternative indexing semantics.
*
* @param N - number of indexed elements
* @param x - input array
* @param stride - stride length
* @param offset - starting index
* @param strideX - stride length
* @param offsetX - starting index
* @returns arithmetic mean
*
* @example
Expand All @@ -57,15 +62,15 @@ interface Routine {
* var v = nanmeanors.ndarray( x.length, x, 1, 0 );
* // returns ~0.3333
*/
ndarray( N: number, x: NumericArray, stride: number, offset: number ): number;
ndarray( N: number, x: InputArray, strideX: number, offsetX: number ): number;
}

/**
* Computes the arithmetic mean of a strided array, ignoring `NaN` values and using ordinary recursive summation.
*
* @param N - number of indexed elements
* @param x - input array
* @param stride - stride length
* @param strideX - stride length
* @returns arithmetic mean
*
* @example
Expand Down
Loading