-
-
Notifications
You must be signed in to change notification settings - Fork 473
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
PR-URL: #2715 Ref: #2656 Co-authored-by: Athan Reines <[email protected]> Reviewed-by: Athan Reines <[email protected]>
- Loading branch information
1 parent
12a87d5
commit 72ed2e1
Showing
93 changed files
with
18,090 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
<!-- | ||
@license Apache-2.0 | ||
Copyright (c) 2024 The Stdlib Authors. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
--> | ||
|
||
# map | ||
|
||
> Apply a callback function to elements in an input ndarray and assign results to elements in an output ndarray. | ||
<section class="intro"> | ||
|
||
</section> | ||
|
||
<!-- /.intro --> | ||
|
||
<section class="usage"> | ||
|
||
## Usage | ||
|
||
```javascript | ||
var map = require( '@stdlib/ndarray/base/map' ); | ||
``` | ||
|
||
#### map( arrays, fcn\[, thisArg] ) | ||
|
||
Applies a callback function to elements in an input ndarray and assigns results to elements in an output ndarray. | ||
|
||
```javascript | ||
var Float64Array = require( '@stdlib/array/float64' ); | ||
|
||
function scale( x ) { | ||
return x * 10.0; | ||
} | ||
|
||
// Create data buffers: | ||
var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] ); | ||
var ybuf = new Float64Array( 6 ); | ||
|
||
// Define the shape of the input and output arrays: | ||
var shape = [ 3, 2 ]; | ||
|
||
// Define the array strides: | ||
var sx = [ 2, 1 ]; | ||
var sy = [ 2, 1 ]; | ||
|
||
// Define the index offsets: | ||
var ox = 0; | ||
var oy = 0; | ||
|
||
// Create the input and output ndarray-like objects: | ||
var x = { | ||
'ref': null, | ||
'dtype': 'float64', | ||
'data': xbuf, | ||
'shape': shape, | ||
'strides': sx, | ||
'offset': ox, | ||
'order': 'row-major' | ||
}; | ||
var y = { | ||
'dtype': 'float64', | ||
'data': ybuf, | ||
'shape': shape, | ||
'strides': sy, | ||
'offset': oy, | ||
'order': 'row-major' | ||
}; | ||
|
||
// Apply the map function: | ||
map( [ x, y ], scale ); | ||
|
||
console.log( y.data ); | ||
// => <Float64Array>[ 10.0, 20.0, 30.0, 40.0, 50.0, 60.0 ] | ||
``` | ||
|
||
The function accepts the following arguments: | ||
|
||
- **arrays**: array-like object containing one input ndarray and one output ndarray. | ||
- **fcn**: callback to apply. | ||
- **thisArg**: callback execution context. | ||
|
||
The callback function is provided the following arguments: | ||
|
||
- **values**: current array element. | ||
- **indices**: current array element indices. | ||
- **arr**: the input ndarray. | ||
|
||
</section> | ||
|
||
<!-- /.usage --> | ||
|
||
<section class="notes"> | ||
|
||
## Notes | ||
|
||
- Each provided ndarray should be an object with the following properties: | ||
|
||
- **dtype**: data type. | ||
- **data**: data buffer. | ||
- **shape**: dimensions. | ||
- **strides**: stride lengths. | ||
- **offset**: index offset. | ||
- **order**: specifies whether an ndarray is row-major (C-style) or column major (Fortran-style). | ||
|
||
- For very high-dimensional ndarrays which are non-contiguous, one should consider copying the underlying data to contiguous memory before applying a callback function in order to achieve better performance. | ||
|
||
</section> | ||
|
||
<!-- /.notes --> | ||
|
||
<section class="examples"> | ||
|
||
## Examples | ||
|
||
<!-- eslint no-undef: "error" --> | ||
|
||
```javascript | ||
var discreteUniform = require( '@stdlib/random/base/discrete-uniform' ).factory; | ||
var filledarray = require( '@stdlib/array/filled' ); | ||
var filledarrayBy = require( '@stdlib/array/filled-by' ); | ||
var abs = require( '@stdlib/math/base/special/abs' ); | ||
var shape2strides = require( '@stdlib/ndarray/base/shape2strides' ); | ||
var ndarray2array = require( '@stdlib/ndarray/base/to-array' ); | ||
var naryFunction = require( '@stdlib/utils/nary-function' ); | ||
var map = require( '@stdlib/ndarray/base/map' ); | ||
|
||
var N = 10; | ||
var x = { | ||
'dtype': 'generic', | ||
'data': filledarrayBy( N, 'generic', discreteUniform( -100, 100 ) ), | ||
'shape': [ 5, 2 ], | ||
'strides': [ 2, 1 ], | ||
'offset': 0, | ||
'order': 'row-major' | ||
}; | ||
var y = { | ||
'dtype': 'generic', | ||
'data': filledarray( 0, N, 'generic' ), | ||
'shape': x.shape.slice(), | ||
'strides': shape2strides( x.shape, 'column-major' ), | ||
'offset': 0, | ||
'order': 'column-major' | ||
}; | ||
|
||
map( [ x, y ], naryFunction( abs, 1 ) ); | ||
console.log( ndarray2array( x.data, x.shape, x.strides, x.offset, x.order ) ); | ||
console.log( ndarray2array( y.data, y.shape, y.strides, y.offset, y.order ) ); | ||
``` | ||
|
||
</section> | ||
|
||
<!-- /.examples --> | ||
|
||
<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. --> | ||
|
||
<section class="related"> | ||
|
||
</section> | ||
|
||
<!-- /.related --> | ||
|
||
<section class="links"> | ||
|
||
<!-- <related-links> --> | ||
|
||
<!-- </related-links> --> | ||
|
||
</section> | ||
|
||
<!-- /.links --> |
152 changes: 152 additions & 0 deletions
152
lib/node_modules/@stdlib/ndarray/base/map/benchmark/benchmark.10d_blocked_columnmajor.js
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
/** | ||
* @license Apache-2.0 | ||
* | ||
* Copyright (c) 2024 The Stdlib Authors. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
'use strict'; | ||
|
||
// MODULES // | ||
|
||
var bench = require( '@stdlib/bench' ); | ||
var randu = require( '@stdlib/random/base/randu' ); | ||
var isnan = require( '@stdlib/math/base/assert/is-nan' ); | ||
var pow = require( '@stdlib/math/base/special/pow' ); | ||
var floor = require( '@stdlib/math/base/special/floor' ); | ||
var round = require( '@stdlib/math/base/special/round' ); | ||
var identity = require( '@stdlib/math/base/special/identity' ); | ||
var filledarray = require( '@stdlib/array/filled' ); | ||
var shape2strides = require( '@stdlib/ndarray/base/shape2strides' ); | ||
var pkg = require( './../package.json' ).name; | ||
var map = require( './../lib/10d_blocked.js' ); | ||
|
||
|
||
// VARIABLES // | ||
|
||
var types = [ 'float64' ]; | ||
var order = 'column-major'; | ||
|
||
|
||
// FUNCTIONS // | ||
|
||
/** | ||
* Creates a benchmark function. | ||
* | ||
* @private | ||
* @param {PositiveInteger} len - ndarray length | ||
* @param {NonNegativeIntegerArray} shape - ndarray shape | ||
* @param {string} xtype - input ndarray data type | ||
* @param {string} ytype - output ndarray data type | ||
* @returns {Function} benchmark function | ||
*/ | ||
function createBenchmark( len, shape, xtype, ytype ) { | ||
var x; | ||
var y; | ||
var i; | ||
|
||
x = filledarray( 0.0, len, xtype ); | ||
y = filledarray( 0.0, len, ytype ); | ||
for ( i = 0; i < len; i++ ) { | ||
x[ i ] = round( ( randu()*200.0 ) - 100.0 ); | ||
} | ||
x = { | ||
'dtype': xtype, | ||
'data': x, | ||
'shape': shape, | ||
'strides': shape2strides( shape, order ), | ||
'offset': 0, | ||
'order': order | ||
}; | ||
y = { | ||
'dtype': ytype, | ||
'data': y, | ||
'shape': shape, | ||
'strides': shape2strides( shape, order ), | ||
'offset': 0, | ||
'order': order | ||
}; | ||
return benchmark; | ||
|
||
/** | ||
* Benchmark function. | ||
* | ||
* @private | ||
* @param {Benchmark} b - benchmark instance | ||
*/ | ||
function benchmark( b ) { | ||
var i; | ||
|
||
b.tic(); | ||
for ( i = 0; i < b.iterations; i++ ) { | ||
map( x, y, identity ); | ||
if ( isnan( y.data[ i%len ] ) ) { | ||
b.fail( 'should not return NaN' ); | ||
} | ||
} | ||
b.toc(); | ||
if ( isnan( y.data[ i%len ] ) ) { | ||
b.fail( 'should not return NaN' ); | ||
} | ||
b.pass( 'benchmark finished' ); | ||
b.end(); | ||
} | ||
} | ||
|
||
|
||
// MAIN // | ||
|
||
/** | ||
* Main execution sequence. | ||
* | ||
* @private | ||
*/ | ||
function main() { | ||
var len; | ||
var min; | ||
var max; | ||
var sh; | ||
var t1; | ||
var t2; | ||
var f; | ||
var i; | ||
var j; | ||
|
||
min = 1; // 10^min | ||
max = 6; // 10^max | ||
|
||
for ( j = 0; j < types.length; j++ ) { | ||
t1 = types[ j ]; | ||
t2 = types[ j ]; | ||
for ( i = min; i <= max; i++ ) { | ||
len = pow( 10, i ); | ||
|
||
sh = [ len/2, 2, 1, 1, 1, 1, 1, 1, 1, 1 ]; | ||
f = createBenchmark( len, sh, t1, t2 ); | ||
bench( pkg+'::blocked:ndims='+sh.length+',len='+len+',shape=['+sh.join(',')+'],xorder='+order+',yorder='+order+',xtype='+t1+',ytype='+t2, f ); | ||
|
||
sh = [ 1, 1, 1, 1, 1, 1, 1, 1, 2, len/2 ]; | ||
f = createBenchmark( len, sh, t1, t2 ); | ||
bench( pkg+'::blocked:ndims='+sh.length+',len='+len+',shape=['+sh.join(',')+'],xorder='+order+',yorder='+order+',xtype='+t1+',ytype='+t2, f ); | ||
|
||
len = floor( pow( len, 1.0/10.0 ) ); | ||
sh = [ len, len, len, len, len, len, len, len, len, len ]; | ||
len *= pow( len, 9 ); | ||
f = createBenchmark( len, sh, t1, t2 ); | ||
bench( pkg+'::blocked:ndims='+sh.length+',len='+len+',shape=['+sh.join(',')+'],xorder='+order+',yorder='+order+',xtype='+t1+',ytype='+t2, f ); | ||
} | ||
} | ||
} | ||
|
||
main(); |
Oops, something went wrong.
72ed2e1
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Coverage Report
The above coverage report was generated for the changes in this push.