-
-
Notifications
You must be signed in to change notification settings - Fork 188
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #3108 from lingium/feature/issue-3107-beta-neg-bin…
…omial-lpmf Feature/issue-3107 add beta negative binomial lpmf
- Loading branch information
Showing
3 changed files
with
233 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
#ifndef STAN_MATH_PRIM_PROB_BETA_NEG_BINOMIAL_LPMF_HPP | ||
#define STAN_MATH_PRIM_PROB_BETA_NEG_BINOMIAL_LPMF_HPP | ||
|
||
#include <stan/math/prim/meta.hpp> | ||
#include <stan/math/prim/err.hpp> | ||
#include <stan/math/prim/fun/constants.hpp> | ||
#include <stan/math/prim/fun/digamma.hpp> | ||
#include <stan/math/prim/fun/lbeta.hpp> | ||
#include <stan/math/prim/fun/lgamma.hpp> | ||
#include <stan/math/prim/fun/max_size.hpp> | ||
#include <stan/math/prim/fun/scalar_seq_view.hpp> | ||
#include <stan/math/prim/fun/size.hpp> | ||
#include <stan/math/prim/fun/size_zero.hpp> | ||
#include <stan/math/prim/fun/value_of.hpp> | ||
#include <stan/math/prim/functor/partials_propagator.hpp> | ||
|
||
namespace stan { | ||
namespace math { | ||
|
||
/** \ingroup prob_dists | ||
* Returns the log PMF of the Beta Negative Binomial distribution with given | ||
* number of successes, prior success, and prior failure parameters. | ||
* Given containers of matching sizes, returns the log sum of probabilities. | ||
* | ||
* @tparam T_n type of failure parameter | ||
* @tparam T_r type of number of successes parameter | ||
* @tparam T_alpha type of prior success parameter | ||
* @tparam T_beta type of prior failure parameter | ||
* | ||
* @param n failure parameter | ||
* @param r Number of successes parameter | ||
* @param alpha prior success parameter | ||
* @param beta prior failure parameter | ||
* @return log probability or log sum of probabilities | ||
* @throw std::domain_error if r, alpha, or beta fails to be positive | ||
* @throw std::invalid_argument if container sizes mismatch | ||
*/ | ||
template <bool propto, typename T_n, typename T_r, typename T_alpha, | ||
typename T_beta, | ||
require_all_not_nonscalar_prim_or_rev_kernel_expression_t< | ||
T_n, T_r, T_alpha, T_beta>* = nullptr> | ||
inline return_type_t<T_r, T_alpha, T_beta> beta_neg_binomial_lpmf( | ||
const T_n& n, const T_r& r, const T_alpha& alpha, const T_beta& beta) { | ||
using T_partials_return = partials_return_t<T_n, T_r, T_alpha, T_beta>; | ||
using T_n_ref = ref_type_t<T_n>; | ||
using T_r_ref = ref_type_t<T_r>; | ||
using T_alpha_ref = ref_type_t<T_alpha>; | ||
using T_beta_ref = ref_type_t<T_beta>; | ||
static constexpr const char* function = "beta_neg_binomial_lpmf"; | ||
check_consistent_sizes( | ||
function, "Failures variable", n, "Number of successes parameter", r, | ||
"Prior success parameter", alpha, "Prior failure parameter", beta); | ||
if (size_zero(n, r, alpha, beta)) { | ||
return 0.0; | ||
} | ||
|
||
T_n_ref n_ref = n; | ||
T_r_ref r_ref = r; | ||
T_alpha_ref alpha_ref = alpha; | ||
T_beta_ref beta_ref = beta; | ||
check_nonnegative(function, "Failures variable", n_ref); | ||
check_positive_finite(function, "Number of successes parameter", r_ref); | ||
check_positive_finite(function, "Prior success parameter", alpha_ref); | ||
check_positive_finite(function, "Prior failure parameter", beta_ref); | ||
|
||
if constexpr (!include_summand<propto, T_r, T_alpha, T_beta>::value) { | ||
return 0.0; | ||
} | ||
|
||
auto ops_partials = make_partials_propagator(r_ref, alpha_ref, beta_ref); | ||
|
||
scalar_seq_view<T_n> n_vec(n); | ||
scalar_seq_view<T_r_ref> r_vec(r_ref); | ||
scalar_seq_view<T_alpha_ref> alpha_vec(alpha_ref); | ||
scalar_seq_view<T_beta_ref> beta_vec(beta_ref); | ||
const size_t max_size_seq_view = max_size(n, r, alpha, beta); | ||
T_partials_return logp(0.0); | ||
for (size_t i = 0; i < max_size_seq_view; i++) { | ||
if constexpr (include_summand<propto>::value) { | ||
logp -= lgamma(n_vec[i] + 1); | ||
} | ||
T_partials_return lbeta_denominator = lbeta(r_vec.val(i), alpha_vec.val(i)); | ||
T_partials_return lgamma_numerator = lgamma(n_vec[i] + beta_vec.val(i)); | ||
T_partials_return lgamma_denominator = lgamma(beta_vec.val(i)); | ||
T_partials_return lbeta_numerator | ||
= lbeta(n_vec[i] + r_vec.val(i), alpha_vec.val(i) + beta_vec.val(i)); | ||
logp += lbeta_numerator + lgamma_numerator - lbeta_denominator | ||
- lgamma_denominator; | ||
if (!is_constant_all<T_r, T_alpha, T_beta>::value) { | ||
T_partials_return digamma_n_r_alpha_beta = digamma( | ||
n_vec[i] + r_vec.val(i) + alpha_vec.val(i) + beta_vec.val(i)); | ||
|
||
if constexpr (!is_constant<T_r>::value || !is_constant<T_alpha>::value) { | ||
T_partials_return digamma_r_alpha | ||
= digamma(r_vec.val(i) + alpha_vec.val(i)); | ||
if constexpr (!is_constant_all<T_r>::value) { | ||
partials<0>(ops_partials)[i] | ||
+= digamma(n_vec[i] + r_vec.val(i)) - digamma_n_r_alpha_beta | ||
- (digamma(r_vec.val(i)) - digamma_r_alpha); | ||
} | ||
if constexpr (!is_constant_all<T_alpha>::value) { | ||
partials<1>(ops_partials)[i] | ||
+= -digamma_n_r_alpha_beta | ||
- (digamma(alpha_vec.val(i)) - digamma_r_alpha); | ||
} | ||
} | ||
if constexpr (!is_constant<T_beta>::value | ||
|| !is_constant<T_alpha>::value) { | ||
T_partials_return digamma_alpha_beta | ||
= digamma(alpha_vec.val(i) + beta_vec.val(i)); | ||
if constexpr (!is_constant_all<T_beta>::value) { | ||
partials<2>(ops_partials)[i] += digamma_alpha_beta | ||
- digamma_n_r_alpha_beta | ||
+ digamma(n_vec[i] + beta_vec.val(i)) | ||
- digamma(beta_vec.val(i)); | ||
} | ||
if constexpr (!is_constant_all<T_alpha>::value) { | ||
partials<1>(ops_partials)[i] += digamma_alpha_beta; | ||
} | ||
} | ||
} | ||
} | ||
return ops_partials.build(logp); | ||
} | ||
|
||
template <typename T_n, typename T_r, typename T_alpha, typename T_beta> | ||
inline return_type_t<T_r, T_alpha, T_beta> beta_neg_binomial_lpmf( | ||
const T_n& n, const T_r& r, const T_alpha& alpha, const T_beta& beta) { | ||
return beta_neg_binomial_lpmf<false>(n, r, alpha, beta); | ||
} | ||
|
||
} // namespace math | ||
} // namespace stan | ||
#endif |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
// Arguments: Ints, Doubles, Doubles, Doubles | ||
#include <stan/math/prim/prob/beta_neg_binomial_lpmf.hpp> | ||
#include <stan/math/prim/fun/lbeta.hpp> | ||
#include <stan/math/prim/fun/lgamma.hpp> | ||
|
||
using stan::math::var; | ||
using std::numeric_limits; | ||
using std::vector; | ||
|
||
class AgradDistributionsBetaNegBinomial : public AgradDistributionTest { | ||
public: | ||
void valid_values(vector<vector<double> >& parameters, | ||
vector<double>& log_prob) { | ||
vector<double> param(4); | ||
|
||
param[0] = 5; // n | ||
param[1] = 20.0; // r | ||
param[2] = 10.0; // alpha | ||
param[3] = 25.0; // beta | ||
parameters.push_back(param); | ||
log_prob.push_back(-10.3681267949788); // expected log_prob | ||
|
||
param[0] = 10; // n | ||
param[1] = 5.5; // r | ||
param[2] = 2.5; // alpha | ||
param[3] = 0.5; // beta | ||
parameters.push_back(param); | ||
log_prob.push_back(-5.166741878823932); // expected log_prob | ||
} | ||
|
||
void invalid_values(vector<size_t>& index, vector<double>& value) { | ||
// n | ||
index.push_back(0U); | ||
value.push_back(-1); | ||
|
||
// r | ||
index.push_back(1U); | ||
value.push_back(0.0); | ||
|
||
index.push_back(1U); | ||
value.push_back(-1.0); | ||
|
||
index.push_back(1U); | ||
value.push_back(std::numeric_limits<double>::infinity()); | ||
|
||
// alpha | ||
index.push_back(2U); | ||
value.push_back(0.0); | ||
|
||
index.push_back(2U); | ||
value.push_back(-1.0); | ||
|
||
index.push_back(2U); | ||
value.push_back(std::numeric_limits<double>::infinity()); | ||
|
||
// beta | ||
index.push_back(3U); | ||
value.push_back(0.0); | ||
|
||
index.push_back(3U); | ||
value.push_back(-1.0); | ||
|
||
index.push_back(3U); | ||
value.push_back(std::numeric_limits<double>::infinity()); | ||
} | ||
|
||
template <class T_n, class T_r, class T_size1, class T_size2, typename T4, | ||
typename T5> | ||
stan::return_type_t<T_r, T_size1, T_size2> log_prob(const T_n& n, | ||
const T_r& r, | ||
const T_size1& alpha, | ||
const T_size2& beta, | ||
const T4&, const T5&) { | ||
return stan::math::beta_neg_binomial_lpmf(n, r, alpha, beta); | ||
} | ||
|
||
template <bool propto, class T_n, class T_r, class T_size1, class T_size2, | ||
typename T4, typename T5> | ||
stan::return_type_t<T_r, T_size1, T_size2> log_prob(const T_n& n, | ||
const T_r& r, | ||
const T_size1& alpha, | ||
const T_size2& beta, | ||
const T4&, const T5&) { | ||
return stan::math::beta_neg_binomial_lpmf<propto>(n, r, alpha, beta); | ||
} | ||
|
||
template <class T_n, class T_r, class T_size1, class T_size2, typename T4, | ||
typename T5> | ||
stan::return_type_t<T_r, T_size1, T_size2> log_prob_function( | ||
const T_n& n, const T_r& r, const T_size1& alpha, const T_size2& beta, | ||
const T4&, const T5&) { | ||
using stan::math::lbeta; | ||
using stan::math::lgamma; | ||
|
||
return lbeta(n + r, alpha + beta) - lbeta(r, alpha) + lgamma(n + beta) | ||
- lgamma(n + 1) - lgamma(beta); | ||
} | ||
}; |