Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix example: pd.melt(var_name=scalar) #170

Open
wants to merge 2 commits into
base: master
Choose a base branch
from

Conversation

bnavigator
Copy link

What this PR does / why we need it:

Pandas 2.2 is more strict than previous versions used to be. The var_name kwargs has always been a scalar, so give it one.

Before:

[   26s] =================================== FAILURES ===================================
[   26s] ________________________________ test_examples _________________________________
[   26s] 
[   26s]     def test_examples():
[   26s]         # reload configuration
[   26s]         importlib.reload(chartify)
[   26s]     
[   26s]         excluded_examples = ['chart_show']
[   26s]         public_examples = [
[   26s]             attr for attr in dir(chartify.examples) if
[   26s]             callable(getattr(chartify.examples, attr))
[   26s]             and not attr.startswith("_")
[   26s]             and attr not in excluded_examples
[   26s]         ]
[   26s]         # Disable chart rendering
[   26s]         chartify.examples._OUTPUT_FORMAT = None
[   26s]         for example in public_examples:
[   26s] >           getattr(chartify.examples, example)()
[   26s] 
[   26s] tests/test_examples.py:36: 
[   26s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
[   26s] chartify/examples.py:45: in wrapper
[   26s]     return f(*args, **kwargs)
[   26s] chartify/examples.py:1304: in style_color_palette_diverging
[   26s]     data = pd.melt(
[   26s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
[   26s] 
[   26s] frame =            time  Very Unlikely  ...       Likely  Very Likely
[   26s] 0    2015-01-01      13.887274  ...   705.859449   804.6...1  ...  1801.226623  1901.008443
[   26s] 1096 2018-01-01    1095.555889  ...  1812.849633  1897.883901
[   26s] 
[   26s] [1097 rows x 6 columns]
[   26s] id_vars = ['time']
[   26s] value_vars = ['Very Unlikely', 'Unlikely', 'Neutral', 'Likely', 'Very Likely']
[   26s] var_name = ['grouping'], value_name = 'y', col_level = None, ignore_index = True
[   26s] 
[   26s]     @Appender(_shared_docs["melt"] % {"caller": "pd.melt(df, ", "other": "DataFrame.melt"})
[   26s]     def melt(
[   26s]         frame: DataFrame,
[   26s]         id_vars=None,
[   26s]         value_vars=None,
[   26s]         var_name=None,
[   26s]         value_name: Hashable = "value",
[   26s]         col_level=None,
[   26s]         ignore_index: bool = True,
[   26s]     ) -> DataFrame:
[   26s]         if value_name in frame.columns:
[   26s]             raise ValueError(
[   26s]                 f"value_name ({value_name}) cannot match an element in "
[   26s]                 "the DataFrame columns."
[   26s]             )
[   26s]         id_vars = ensure_list_vars(id_vars, "id_vars", frame.columns)
[   26s]         value_vars_was_not_none = value_vars is not None
[   26s]         value_vars = ensure_list_vars(value_vars, "value_vars", frame.columns)
[   26s]     
[   26s]         if id_vars or value_vars:
[   26s]             if col_level is not None:
[   26s]                 level = frame.columns.get_level_values(col_level)
[   26s]             else:
[   26s]                 level = frame.columns
[   26s]             labels = id_vars + value_vars
[   26s]             idx = level.get_indexer_for(labels)
[   26s]             missing = idx == -1
[   26s]             if missing.any():
[   26s]                 missing_labels = [
[   26s]                     lab for lab, not_found in zip(labels, missing) if not_found
[   26s]                 ]
[   26s]                 raise KeyError(
[   26s]                     "The following id_vars or value_vars are not present in "
[   26s]                     f"the DataFrame: {missing_labels}"
[   26s]                 )
[   26s]             if value_vars_was_not_none:
[   26s]                 frame = frame.iloc[:, algos.unique(idx)]
[   26s]             else:
[   26s]                 frame = frame.copy()
[   26s]         else:
[   26s]             frame = frame.copy()
[   26s]     
[   26s]         if col_level is not None:  # allow list or other?
[   26s]             # frame is a copy
[   26s]             frame.columns = frame.columns.get_level_values(col_level)
[   26s]     
[   26s]         if var_name is None:
[   26s]             if isinstance(frame.columns, MultiIndex):
[   26s]                 if len(frame.columns.names) == len(set(frame.columns.names)):
[   26s]                     var_name = frame.columns.names
[   26s]                 else:
[   26s]                     var_name = [f"variable_{i}" for i in range(len(frame.columns.names))]
[   26s]             else:
[   26s]                 var_name = [
[   26s]                     frame.columns.name if frame.columns.name is not None else "variable"
[   26s]                 ]
[   26s]         elif is_list_like(var_name):
[   26s] >           raise ValueError(f"{var_name=} must be a scalar.")
[   26s] E           ValueError: var_name=['grouping'] must be a scalar.
[   26s] 
[   26s] /usr/lib64/python3.10/site-packages/pandas/core/reshape/melt.py:100: ValueError

After:
✔️ Test passes.

Release note:

NONE

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant