Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement Hierarchical Identity Based Encryption #5

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ Implemented:
- [X] Hashing to G1 (https://www.di.ens.fr/~fouque/pub/latincrypt12.pdf)
- [X] Example: BLS signature scheme
- [X] Example: Tripartite key exchange
- [X] Example: Boneh-Boyen-Goh Hierarchical Identity Based Encryption

TODO:
- [ ] Extend to support larger prime fields (eg BN-448)
Expand Down
132 changes: 132 additions & 0 deletions hibe.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
import bn256
import random

# this is a literal implementation of the algorithms in Hierarchical Identity Based Encryption with Constant Size Ciphertext
# by Boneh, Boyen, and Goh
# https://crypto.stanford.edu/~dabo/papers/shibe.pdf

curve_order = bn256.order

# To generate system parameters for an HIBE of maximum depth l, select a random number generator g \belongs_to G, a random alpha \belongs_to Z_p,
# and set g_1 = g^alpha. Next, pick random elements g_2, g_3, h_1...h_l, \belongs_to G
# params = (g, g_1, g_2, g_3, h_1...h_l), where l = max_depth
# master_key = g_2^alpha
def Setup(l):
k, g = bn256.g2_random()

alpha = random.randrange(2, curve_order)

# it turns out that gt.scalar_mul works for any kind of point... in other words g.scalar_mul(alpha) == bn256.curve_twist(g.x, g.y, g.z).scalar_mul(alpha)
g_1 = g.scalar_mul(alpha)

k, g_2 = bn256.g1_random()

k, g_3 = bn256.g1_random()

h_arr = list(map(lambda x: bn256.g1_random()[1], range(l)))

master_key = g_2.scalar_mul(alpha)

return (g, g_1, g_2, g_3, h_arr, master_key)

# To generate a private key d_{id} for identity ID = [I_1,...I_k] \belongs_to (Z_p^*)^k of depth k<=l, pick a random r \belongs_to Z_p and output
# d_{ID} = () (master_key*(h_arr[0:k]))^r, g^r, h_arr[k+1]^r...h_arr[l]^r ) <--- 3-tuple
def KeyGen(params, id):
(g, g_1, g_2, g_3, h_arr, master_key) = params

depth = len(id)
maxDepth = len(h_arr)

r = random.randrange(2, curve_order)

# compute first element
running_product = bn256.curve_point(g_3.x, g_3.y, g_3.z)
for x in range(0, depth):
# h_x^{I_x}
h_member_to_the_i = h_arr[x].scalar_mul(id[x])
running_product = bn256.point_add(running_product, h_member_to_the_i)

running_product = running_product.scalar_mul(r)

result_1 = bn256.point_add(running_product, master_key)

# compute second element
result_2 = g.scalar_mul(r)

# compute third element which is h_arr where every element is scalar_mul'd by r
result_3 = list(map(lambda x: h_arr[x].scalar_mul(r), range(depth, maxDepth)))

return (result_1, result_2, result_3)

# to encrypt a message M \belongs_to G_1 under the public key ID = (I_1, .. I_k) \belongs_to (Z_p^*)^k, pick a random s \belongs_to Z_p and output
# CT = (e(g_1, g_2)^s*m, g^s, (h_arr[0:k]*g_3)^s)
def Encrypt(params, id, m):
(g, g_1, g_2, g_3, h_arr, master_key) = params

depth = len(id)

s = random.randrange(2, curve_order)

# compute first element
e = bn256.optimal_ate(g_1, g_2)
e_to_s = e.exp(s)

result_1 = e_to_s.mul(m)

# compute second element
result_2 = g.scalar_mul(s)

# compute third element
running_product = bn256.curve_point(g_3.x, g_3.y, g_3.z)
for x in range(0, depth):
# h_x^{I_x}
h_member_to_the_i = h_arr[x].scalar_mul(id[x])
running_product = bn256.point_add(running_product, h_member_to_the_i)

running_product = running_product.scalar_mul(s)

result_3 = running_product

return (result_1, result_2, result_3)

# to decrypt a given ciphertext CT = (A, B, C) using the private key d_{ID} = (a_0, a_1, b_arr).
# output A*e(a_1,C) / e(B, a_0)
def Decrypt(private_key, ciphertext):
(a_0, a_1, b_arr) = private_key
(A, B, C) = ciphertext

e_a1_C = bn256.optimal_ate(a_1, C)
numerator = e_a1_C.mul(A)

denominator = bn256.optimal_ate(B, a_0)

return numerator.mul(denominator.inverse())

message = bn256.optimal_ate(bn256.g2_random()[1], bn256.g1_random()[1])

params = Setup(10)
path = [1,2,3]

# TODO: in order to vend keys for children these functions need to have params and master_key separated, so that children
# can generate further keys based on a_1
privkey = KeyGen(params, path)
ciphertext = Encrypt(params, path, message)
plaintext = Decrypt(privkey, ciphertext)

print("------------------------ MESSAGE:")
print(message)
print("------------------------ SETUP:")
print(params)
print("------------------------ PATH:")
print(path)
print("------------------------ PRIVATE KEY :")
print(privkey)
print("------------------------ CIPHERTEXT:")
print(ciphertext)
print("------------------------ PLAINTEXT:")
print(plaintext)

print("-------------------------------------------")
print("-------------------------------------------")
print("- Does MESSAGE equal PLAINTEXT ?? -")
print(message == plaintext)