Skip to content

pfnet-research/pfgen-bench

Repository files navigation

Preferred Generation Benchmark

pfgen-benchmark is a benchmark designed to evaluate Japanese text generation, specifically for pretrained models. Unlike conventional benchmarks that use templates containing instructions, this benchmark relies solely on numerous examples. By conveying expectations such as the question-answering nature of the task, responses of approximately 100 characters, and outputs resembling formal public documents purely through examples, it minimizes the influence of differences in instructions or templates. Additionally, output evaluation is conducted using n-gram-based methods, enabling quick, cost-effective, and deterministic evaluations, unlike the LLM as a Judge approach.

To enable comparisons across as many models as possible, the leaderboard actively includes a wide range of models. These include openly accessible models, models cited in academic papers, and those announced by companies through press releases. Contributions of model outputs are encouraged, and results can be submitted via pull requests. For detailed instructions on how to contribute, please refer to the "How to Contribute" section.

See more details: arXiv:2502.09316

pfgen-benchmark は事前学習モデル向けに設計された日本語の生成文を評価するベンチマークです。通常のベンチマークでは指示文を含むテンプレートを使いますが、このベンチマークでは多数の例示のみを行います。質問応答タスクであることや、約100字の回答、公用文に近い出力を期待していることを例示のみで伝えることで、指示文やテンプレートの差異による影響を小さくしています。また、出力文の評価は n-gram を用いた方法を用いており、LLM as a Judge の手法と異なり、短時間、低コストでかつ決定的な評価を可能にしています。

詳しくはこちら: Jxiv preprint

できる限り多くのモデルを同じ軸で比較できるように、リーダーボードには積極的に多くのモデル掲載しています。オープンにアクセス可能なモデル、論文で言及されているモデル、企業がプレスリリースを出しているモデルなど、比較の価値があると思われるモデルについては、是非プルリクエストで出力を追加してください。追加方法については「How to contribute」を参照ください。

License of LLM Output

The license for parts of this repository, except for LLM-generated outputs, is Apache License Version 2.0. The license for LLM-generated outputs depends on the license of each model.

How to Evaluate a Model

You can evaluate the model using either run-hf.py (which uses transformers) or run-vllm.py (which uses vLLM). For detailed parameters, refer to --help. The --num-trials parameter, which determines the number of patterns for which the model will generate answers, should be decided considering the trade-off between execution time and required accuracy.

For pretrained models:

# Run a model using Huggingface library or vLLM.
python ./run-hf.py --model=llm-jp/llm-jp-3-150m --num-trials=5

# Evaluate output and update leaderboard.
make

For instruction models:

# Run a model using Huggingface library or vLLM with three templates.
python ./run-hf.py --model=llm-jp/llm-jp-3-150m-instruct3 --num-trials=5
python ./run-hf.py --model=llm-jp/llm-jp-3-150m-instruct3 --num-trials=5 --mode=qa
python ./run-hf.py --model=llm-jp/llm-jp-3-150m-instruct3 --num-trials=5 --mode=chat

# Evaluate output and update leaderboard.
make

Command-line Arguments

  • --model={{model name}} ... The model name. (Required)
  • --path={{path to model directory}} ... The path to a local model directory. (Default: None)
  • --num-trials={{number of trials}} ... The number of trials. (Default: 10)
  • --mode={{mode}} ... Must be one of completion, qa, and chat. (Default: completion)
    • qa and chat can be used only when the model has a chat template.
    • The instruction message will be included in a user message for qa and in a system message for chat.

How to Contribute

Follow the instructions in the "How to Evaluate a Model" section to run the evaluation. This process will generate config.json and trials.jsonl.xz files under the result directory. Please create a pull request containing only these two files.

To ensure more accurate ranking among models, the number of executions (--num-trials) should be as many as possible, within the limit of 100 trials.

Leaderboard

🟢 ... completion mode, 💬 ... qa/chat mode.

Rank Score                    Model                                       Length           Fluency Truthfulness Helpfulness
N/A 1.0501 (±0.0000/√1) 👑 system/ground-truth 100.0 (±0.0) 1.155 0.996 1.000
1 0.9303 (±0.0083/√10) 💬 anthropic/claude-3-5-sonnet-20240620 102.2 (±10.4) 0.949 0.959 0.883
2 0.9144 (±0.0037/√2) 💬 deepseek-ai/DeepSeek-V3 87.4 (±14.9) 0.960 0.983 0.800
3 0.8615 (±0.0092/√10) 💬 openai/gpt-4o 84.5 (±18.6) 0.919 0.980 0.686
4 0.8584 (±0.0163/√10) 💬 deepseek-ai/DeepSeek-R1 106.1 (±13.5) 0.839 0.929 0.807
N/A 0.8494 (±0.0253/√1000) 🎯 system/criteria 100.0 (±3.4) 0.936 0.978 0.505
5 0.8359 (±0.0216/√10) 💬 Qwen/Qwen-Max-2025-01-25 89.6 (±18.7) 0.864 0.968 0.676
6 0.8352 (±0.0107/√10) 💬 Qwen/Qwen-Max 88.8 (±18.7) 0.862 0.964 0.679
7 0.8279 (±0.0131/√10) 💬 MiniMax-Text-01 77.8 (±22.2) 0.858 0.988 0.638
8 0.8270 (±0.0229/√10) 💬 anthropic/claude-3-opus-20240229 102.3 (±9.5) 0.911 0.944 0.627
9 0.8192 (±0.0207/√10) 💬 google/gemini-1.5-pro-002 76.3 (±17.4) 0.826 0.976 0.656
10 0.8157 (±0.0119/√10) 💬 MiniMax-Text-01 78.9 (±25.5) 0.850 0.986 0.611
11 0.8036 (±0.0133/√10) 💬 openai/gpt-4-turbo 86.5 (±17.4) 0.820 0.959 0.632
12 0.7916 (±0.0146/√10) 💬 openai/gpt-4 107.2 (±11.6) 0.888 0.951 0.536
13 0.7827 (±0.0129/√100) 💬 Qwen/Qwen2.5-72B-Instruct 98.7 (±14.8) 0.871 0.936 0.540
14 0.7789 (±0.0213/√100) 🟢 weblab-GENIAC/Tanuki-8x8B-dpo-v1.0 109.1 (±36.8) 0.890 0.941 0.506
15 0.7782 (±0.0154/√100) 💬 Qwen/Qwen2.5-72B-Instruct 96.5 (±17.8) 0.847 0.939 0.549
16 0.7773 (±0.0168/√100) 💬 pfnet/plamo-1.0-prime 178.2 (±114.5) 0.874 0.942 0.516
17 0.7768 (±0.0113/√5) 💬 mlx-community/Qwen2.5-72B-Instruct-4bit 100.8 (±17.7) 0.860 0.933 0.538
18 0.7766 (±0.0276/√100) 🟢 tokyotech-llm/Swallow-70b-NVE-hf 104.1 (±17.9) 0.884 0.938 0.507
19 0.7756 (±0.0264/√100) 🟢 tokyotech-llm/Swallow-70b-NVE-instruc... 104.1 (±18.5) 0.878 0.938 0.510
20 0.7748 (±0.0000/√1) 💬 openai/chatgpt-o1 76.3 (±17.7) 0.755 0.960 0.610
21 0.7748 (±0.0299/√100) 🟢 sbintuitions/sarashina2-8x70b 105.7 (±21.5) 0.867 0.937 0.520
22 0.7735 (±0.0254/√50) 🟢 abeja/ABEJA-Qwen2.5-32b-Japanese-v0.1 154.6 (±121.1) 0.845 0.923 0.553
23 0.7650 (±0.0263/√100) 🟢 tokyotech-llm/Swallow-70b-instruct-hf 102.5 (±14.4) 0.872 0.929 0.494
24 0.7643 (±0.0000/√1) 💬 openai/chatgpt-o1-pro 79.5 (±17.3) 0.748 0.955 0.590
25 0.7628 (±0.0275/√100) 🟢 tokyotech-llm/Swallow-70b-hf 103.5 (±16.1) 0.876 0.930 0.483
26 0.7601 (±0.0289/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-70B-v0.1 106.3 (±21.0) 0.864 0.925 0.492
27 0.7538 (±0.0251/√100) 🟢 turing-motors/Llama-3-heron-brain-70B... 101.1 (±16.9) 0.857 0.925 0.479
28 0.7526 (±0.0243/√100) 🟢 pfnet/plamo-2-8b 103.7 (±17.3) 0.863 0.939 0.456
29 0.7501 (±0.0237/√100) 💬 weblab-GENIAC/Tanuki-8x8B-dpo-v1.0 181.0 (±87.4) 0.847 0.923 0.480
30 0.7469 (±0.0270/√100) 🟢 pfnet/plamo-100b-base 115.2 (±64.0) 0.861 0.920 0.460
31 0.7458 (±0.0244/√100) 🟢 llm-jp/llm-jp-3-172b-instruct2 105.8 (±21.8) 0.850 0.929 0.458
32 0.7444 (±0.0260/√100) 🟢 sbintuitions/sarashina2-70b 120.0 (±49.4) 0.825 0.923 0.485
33 0.7423 (±0.0302/√100) 💬 cyberagent/Llama-3.1-70B-Japanese-Ins... 199.2 (±110.3) 0.817 0.905 0.505
34 0.7407 (±0.0170/√10) 💬 google/gemini-1.5-flash-002 68.4 (±20.2) 0.742 0.960 0.519
35 0.7392 (±0.0232/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-70B-I... 93.6 (±23.5) 0.847 0.941 0.429
36 0.7370 (±0.0217/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-70B-I... 97.5 (±19.8) 0.846 0.932 0.433
37 0.7365 (±0.0218/√100) 🟢 CohereForAI/c4ai-command-r-plus 107.5 (±42.3) 0.818 0.913 0.478
38 0.7336 (±0.0254/√100) 🟢 tokyotech-llm/Llama-3-Swallow-70B-v0.1 108.2 (±24.7) 0.837 0.908 0.456
39 0.7329 (±0.0191/√100) 💬 mistralai/Mistral-Large-Instruct-2411 124.5 (±28.2) 0.828 0.902 0.469
40 0.7325 (±0.0229/√100) 🟢 llm-jp/llm-jp-3-13b-instruct3 110.0 (±21.9) 0.823 0.905 0.469
41 0.7320 (±0.0201/√10) 💬 anthropic/claude-3-sonnet-20240229 114.3 (±18.9) 0.810 0.910 0.476
42 0.7294 (±0.0229/√100) 🟢 llm-jp/llm-jp-3-172b 101.8 (±17.4) 0.826 0.921 0.441
43 0.7273 (±0.0233/√10) 💬 google/gemini-2.0-flash-exp 60.7 (±16.3) 0.727 0.978 0.476
44 0.7262 (±0.0215/√100) 💬 mistralai/Mistral-Large-Instruct-2411 120.8 (±25.8) 0.822 0.899 0.458
45 0.7250 (±0.0261/√100) 🟢 llm-jp/llm-jp-3-13b-instruct2 108.8 (±21.4) 0.827 0.906 0.442
46 0.7249 (±0.0247/√100) 💬 cyberagent/calm3-22b-chat 136.8 (±46.7) 0.813 0.907 0.455
47 0.7246 (±0.0250/√100) 💬 tokyotech-llm/Llama-3.1-Swallow-70B-I... 89.8 (±33.9) 0.812 0.940 0.422
48 0.7217 (±0.0219/√100) 🟢 cyberagent/calm3-22b-chat 105.0 (±13.1) 0.824 0.916 0.425
49 0.7194 (±0.0321/√10) 💬 google/text-bison 77.6 (±31.9) 0.790 0.968 0.401
50 0.7185 (±0.0000/√1) 💬 elyza/Llama-3-ELYZA-JP-70B 98.6 (±33.8) 0.837 0.931 0.388
51 0.7175 (±0.0257/√100) 🟢 nvidia/nemotron-4-340b-instruct 107.3 (±28.4) 0.816 0.908 0.429
52 0.7174 (±0.0243/√100) 🟢 llm-jp/llm-jp-3-13b-instruct 108.3 (±21.1) 0.807 0.906 0.439
53 0.7166 (±0.0305/√100) 🟢 llm-jp/llm-jp-3-172b-beta2 101.6 (±20.5) 0.814 0.918 0.417
54 0.7086 (±0.0192/√100) 🟢 mistralai/Mistral-Large-Instruct-2411 104.5 (±16.2) 0.810 0.900 0.415
55 0.7084 (±0.0207/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-8B-In... 95.9 (±19.7) 0.835 0.930 0.360
56 0.7073 (±0.0239/√100) 🟢 llm-jp/llm-jp-3-172b-instruct3 108.6 (±23.1) 0.799 0.908 0.414
57 0.7061 (±0.0205/√100) 🟢 AXCXEPT/EZO-Qwen2.5-72B-Instruct 140.5 (±62.0) 0.796 0.894 0.428
58 0.7046 (±0.0248/√100) 💬 nvidia/nemotron-4-340b-instruct 94.5 (±39.1) 0.768 0.910 0.435
59 0.7024 (±0.0238/√100) 🟢 rinna/nekomata-14b 104.3 (±18.0) 0.812 0.912 0.383
60 0.7023 (±0.0271/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-8B-v0.2 112.6 (±33.2) 0.818 0.901 0.388
61 0.7016 (±0.0212/√100) 🟢 llm-jp/llm-jp-3-7.2b-instruct2 106.5 (±20.0) 0.810 0.902 0.393
62 0.7008 (±0.0318/√100) 🟢 tokyotech-llm/Swallow-13b-instruct-hf 104.5 (±13.0) 0.812 0.898 0.392
63 0.7000 (±0.0271/√100) 💬 llm-jp/llm-jp-3-13b-instruct 192.0 (±114.0) 0.780 0.890 0.430
64 0.6990 (±0.0288/√100) 🟢 tokyotech-llm/Swallow-13b-NVE-hf 106.2 (±19.2) 0.820 0.906 0.371
65 0.6980 (±0.0252/√100) 💬 tokyotech-llm/Llama-3.1-Swallow-8B-In... 98.7 (±50.0) 0.798 0.927 0.369
66 0.6969 (±0.0219/√100) 🟢 llm-jp/llm-jp-3-7.2b-instruct3 107.3 (±18.4) 0.798 0.896 0.396
67 0.6958 (±0.0236/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-8B-In... 92.9 (±20.0) 0.814 0.931 0.343
68 0.6945 (±0.0300/√100) 🟢 sbintuitions/sarashina2-13b 107.8 (±28.3) 0.794 0.900 0.390
69 0.6938 (±0.0217/√100) 🟢 weblab-GENIAC/Tanuki-8B-dpo-v1.0 111.5 (±22.8) 0.800 0.893 0.389
70 0.6924 (±0.0232/√100) 💬 tokyotech-llm/Llama-3.1-Swallow-70B-I... 74.1 (±31.4) 0.755 0.948 0.373
71 0.6891 (±0.0255/√100) 🟢 tokyotech-llm/Swallow-13b-hf 104.8 (±17.7) 0.811 0.901 0.355
72 0.6853 (±0.0201/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-8B-In... 96.6 (±18.8) 0.815 0.919 0.322
73 0.6844 (±0.0239/√100) 🟢 llm-jp/llm-jp-3-172b-beta1 103.0 (±16.0) 0.785 0.900 0.369
74 0.6820 (±0.0232/√100) 💬 llm-jp/llm-jp-3-7.2b-instruct 182.5 (±105.7) 0.781 0.883 0.381
75 0.6808 (±0.0228/√100) 💬 llm-jp/llm-jp-3-172b-instruct2 254.5 (±138.6) 0.780 0.887 0.376
76 0.6794 (±0.0243/√100) 🟢 cyberagent/Llama-3.1-70B-Japanese-Ins... 128.8 (±72.2) 0.764 0.883 0.391
77 0.6787 (±0.0267/√100) 💬 llm-jp/llm-jp-3-13b-instruct3 245.0 (±129.9) 0.770 0.875 0.391
78 0.6764 (±0.0217/√100) 🟢 llm-jp/llm-jp-3-7.2b-instruct 104.7 (±19.4) 0.775 0.890 0.364
79 0.6759 (±0.0232/√10) 🟢 meta-llama/Meta-Llama-3.1-405B 101.2 (±15.1) 0.767 0.892 0.368
80 0.6746 (±0.0215/√100) 💬 llm-jp/llm-jp-3-172b-instruct3 216.1 (±98.9) 0.756 0.875 0.393
81 0.6737 (±0.0276/√100) 🟢 sbintuitions/sarashina1-13b 105.4 (±23.4) 0.775 0.882 0.364
82 0.6715 (±0.0284/√100) 🟢 tokyotech-llm/Llama-3.1-Swallow-8B-v0.1 107.5 (±22.2) 0.787 0.881 0.347
83 0.6697 (±0.0277/√100) 🟢 nvidia/nemotron-4-340b-base 106.9 (±26.5) 0.768 0.884 0.357
84 0.6677 (±0.0250/√100) 🟢 llm-jp/llm-jp-3-13b 101.1 (±9.7) 0.770 0.884 0.349
85 0.6673 (±0.0221/√100) 💬 llm-jp/llm-jp-3-7.2b-instruct3 234.2 (±116.7) 0.768 0.872 0.363
86 0.6673 (±0.0225/√100) 🟢 sbintuitions/sarashina1-65b 104.2 (±20.0) 0.776 0.894 0.332
87 0.6663 (±0.0262/√100) 🟢 tokyotech-llm/Swallow-7b-plus-hf 106.1 (±18.1) 0.780 0.880 0.339
88 0.6640 (±0.0292/√100) 💬 llm-jp/llm-jp-3-13b-instruct2 256.5 (±153.0) 0.755 0.870 0.368
89 0.6634 (±0.0252/√100) 💬 llm-jp/llm-jp-3-7.2b-instruct2 249.5 (±141.8) 0.768 0.872 0.351
90 0.6625 (±0.0140/√10) 💬 anthropic/claude-3-haiku-20240307 81.9 (±31.0) 0.747 0.943 0.298
91 0.6624 (±0.0000/√1) 💬 openai/chatgpt-o3-mini-high 68.1 (±14.5) 0.632 0.925 0.430
92 0.6616 (±0.0378/√10) 💬 google/gemini-1.0-pro-002 118.7 (±90.9) 0.689 0.894 0.402
93 0.6590 (±0.0133/√10) 💬 google/gemini-2.0-flash-thinking-exp-... 49.8 (±11.0) 0.639 0.984 0.354
94 0.6572 (±0.0518/√100) 💬 tokyotech-llm/Llama-3.1-Swallow-8B-In... 108.9 (±63.7) 0.764 0.895 0.313
95 0.6494 (±0.0260/√100) 🟢 Qwen/Qwen2.5-72b 106.8 (±48.2) 0.749 0.863 0.337
96 0.6473 (±0.0182/√100) 💬 Qwen/Qwen2-72B-Instruct 108.7 (±24.8) 0.703 0.853 0.386
97 0.6456 (±0.0255/√100) 🟢 sbintuitions/sarashina2-7b 105.6 (±22.8) 0.746 0.874 0.316
98 0.6447 (±0.0251/√100) 💬 tokyotech-llm/Llama-3.1-Swallow-8B-In... 74.3 (±31.3) 0.706 0.934 0.294
99 0.6445 (±0.0241/√100) 🟢 tokyotech-llm/Llama-3-Swallow-8B-v0.1 110.3 (±28.4) 0.748 0.867 0.319
100 0.6420 (±0.0259/√100) 🟢 microsoft/phi-4 104.2 (±15.2) 0.754 0.864 0.309
101 0.6407 (±0.0242/√100) 🟢 AXCXEPT/Llama-3.1-70B-EZO-1.1-it 147.8 (±92.9) 0.721 0.844 0.357
102 0.6406 (±0.0139/√100) 💬 Qwen/QwQ-32B-Preview 119.1 (±72.2) 0.730 0.897 0.294
103 0.6399 (±0.1763/√100) 💬 turing-motors/Llama-3-heron-brain-70B... 155.4 (±101.8) 0.718 0.805 0.397
104 0.6379 (±0.0263/√100) 🟢 llm-jp/llm-jp-3-3.7b-instruct2 106.8 (±22.2) 0.743 0.867 0.304
105 0.6368 (±0.0207/√100) 🟢 tokyotech-llm/Swallow-MX-8x7b-NVE-v0.1 105.5 (±21.0) 0.753 0.870 0.287
106 0.6350 (±0.0260/√100) 🟢 karakuri-ai/karakuri-lm-8x7b-instruct... 104.0 (±16.9) 0.755 0.863 0.287
107 0.6337 (±0.0265/√100) 🟢 tokyotech-llm/Swallow-7b-hf 106.5 (±18.7) 0.746 0.866 0.289
108 0.6335 (±0.0252/√100) 🟢 karakuri-ai/karakuri-lm-8x7b-chat-v0.1 103.2 (±16.6) 0.766 0.872 0.263
109 0.6318 (±0.0264/√100) 🟢 tokyotech-llm/Llama-3-Swallow-70B-Ins... 119.2 (±74.3) 0.724 0.861 0.311
110 0.6311 (±0.0226/√100) 💬 llm-jp/llm-jp-3-3.7b-instruct 193.2 (±119.8) 0.732 0.847 0.314
111 0.6310 (±0.0127/√100) 💬 Qwen/Qwen2.5-32B-Instruct 75.4 (±19.3) 0.634 0.898 0.360
112 0.6303 (±0.0252/√100) 🟢 cyberagent/calm2-7b-chat-dpo-experime... 110.0 (±24.3) 0.735 0.863 0.293
113 0.6302 (±0.0233/√100) 🟢 llm-jp/llm-jp-3-3.7b-instruct 102.9 (±18.0) 0.738 0.863 0.289
114 0.6297 (±0.0150/√100) 💬 Qwen/Qwen2.5-32B-Instruct 71.1 (±18.7) 0.634 0.906 0.349
115 0.6295 (±0.0226/√100) 💬 microsoft/phi-4 117.8 (±34.9) 0.706 0.843 0.340
116 0.6294 (±0.0267/√100) 💬 microsoft/phi-4 117.8 (±37.7) 0.705 0.846 0.337
117 0.6291 (±0.0207/√100) 💬 Qwen/QwQ-32B-Preview 229.6 (±135.9) 0.719 0.867 0.301
118 0.6285 (±0.0239/√100) 🟢 pfnet/nekomata-14b-pfn-qfin-inst-merge 124.7 (±47.2) 0.725 0.866 0.295
119 0.6279 (±0.0252/√100) 🟢 tokyotech-llm/Swallow-7b-NVE-hf 108.1 (±24.5) 0.747 0.870 0.267
120 0.6274 (±0.0772/√100) 🟢 rinna/nekomata-14b-instruction 98.3 (±24.2) 0.732 0.855 0.295
121 0.6267 (±0.0263/√100) 🟢 sbintuitions/sarashina1-7b 106.7 (±25.1) 0.737 0.866 0.276
122 0.6252 (±0.0246/√100) 🟢 karakuri-ai/karakuri-lm-70b-v0.1 106.0 (±27.0) 0.713 0.852 0.310
123 0.6202 (±0.0251/√100) 🟢 stabilityai/japanese-stablelm-base-be... 107.3 (±19.2) 0.733 0.848 0.280
124 0.6197 (±0.0258/√100) 🟢 stockmark/stockmark-13b 108.9 (±49.3) 0.727 0.860 0.272
125 0.6191 (±0.0284/√100) 🟢 stockmark/stockmark-13b-instruct 108.0 (±46.8) 0.720 0.859 0.278
126 0.6178 (±0.0230/√100) 🟢 karakuri-ai/karakuri-lm-70b-chat-v0.1 104.7 (±27.5) 0.706 0.842 0.306
127 0.6176 (±0.0249/√100) 🟢 tokyotech-llm/Swallow-7b-instruct-hf 106.3 (±17.8) 0.716 0.851 0.285
128 0.6160 (±0.0195/√100) 🟢 AXCXEPT/EZO-Qwen2.5-32B-Instruct 196.8 (±119.0) 0.690 0.848 0.310
129 0.6149 (±0.0153/√100) 💬 Qwen/Qwen2.5-14B-Instruct 76.5 (±18.4) 0.644 0.893 0.308
130 0.6136 (±0.0143/√10) 💬 openai/gpt-35-turbo 64.0 (±22.2) 0.658 0.944 0.239
131 0.6105 (±0.0288/√100) 💬 llm-jp/llm-jp-3-3.7b-instruct3 189.9 (±101.5) 0.697 0.834 0.301
132 0.6095 (±0.0225/√100) 💬 rinna/llama-3-youko-70b-instruct 135.3 (±46.8) 0.683 0.817 0.328
133 0.6091 (±0.0277/√100) 🟢 pfnet/nekomata-14b-pfn-qfin 85.1 (±28.4) 0.672 0.893 0.262
134 0.6087 (±0.1545/√100) 💬 tokyotech-llm/Swallow-70b-NVE-instruc... 135.7 (±74.0) 0.678 0.804 0.344
135 0.6085 (±0.0387/√100) 💬 llm-jp/llm-jp-3-3.7b-instruct2 207.7 (±130.6) 0.692 0.832 0.301
136 0.6085 (±0.0264/√100) 🟢 llm-jp/llm-jp-3-7.2b 104.0 (±14.7) 0.713 0.851 0.262
137 0.6063 (±0.0213/√100) 💬 Qwen/Qwen2.5-14B-Instruct 80.0 (±21.8) 0.639 0.889 0.290
138 0.6060 (±0.0238/√100) 🟢 Qwen/Qwen2-72B 105.5 (±23.5) 0.703 0.836 0.279
139 0.6037 (±0.0239/√100) 🟢 tokyotech-llm/Swallow-7b-NVE-instruct-hf 105.7 (±16.4) 0.719 0.847 0.245
140 0.6030 (±0.0287/√100) 💬 karakuri-ai/karakuri-lm-8x7b-instruct... 197.4 (±72.1) 0.703 0.832 0.274
141 0.6029 (±0.0223/√100) 🟢 Qwen/Qwen2-72B-Instruct 106.0 (±26.7) 0.684 0.825 0.299
142 0.5987 (±0.0264/√100) 🟢 cyberagent/calm2-7b-chat 107.5 (±20.8) 0.701 0.843 0.253
143 0.5971 (±0.0235/√100) 🟢 stockmark/stockmark-100b 107.2 (±24.7) 0.709 0.842 0.240
144 0.5945 (±0.1370/√100) 💬 tokyotech-llm/Swallow-13b-instruct-hf 167.3 (±116.4) 0.670 0.790 0.323
145 0.5921 (±0.0211/√100) 🟢 elyza/Llama-3-ELYZA-JP-8B 115.6 (±44.8) 0.685 0.831 0.260
146 0.5866 (±0.0202/√100) 🟢 Qwen/Qwen2.5-32b 104.7 (±26.9) 0.690 0.820 0.250
147 0.5852 (±0.0208/√100) 💬 llm-jp/llm-jp-3-13b-instruct3 347.6 (±147.8) 0.672 0.806 0.277
148 0.5832 (±0.0220/√100) 🟢 augmxnt/shisa-gamma-7b-v1 106.7 (±21.8) 0.706 0.831 0.213
149 0.5825 (±0.0249/√100) 🟢 tokyotech-llm/Swallow-MS-7b-v0.1 106.4 (±25.9) 0.702 0.828 0.218
150 0.5811 (±0.0218/√100) 🟢 llm-jp/llm-jp-13b-instruct-full-ac_00... 103.6 (±15.6) 0.675 0.816 0.252
151 0.5808 (±0.0220/√100) 🟢 stabilityai/japanese-stablelm-base-ga... 106.9 (±17.2) 0.690 0.822 0.230
152 0.5793 (±0.0202/√100) 💬 llm-jp/llm-jp-3-172b-instruct3 372.5 (±133.4) 0.655 0.806 0.277
153 0.5783 (±0.0217/√100) 🟢 microsoft/Phi-3-medium-4k-instruct 105.9 (±20.0) 0.675 0.826 0.234
154 0.5777 (±0.0228/√100) 🟢 llm-jp/llm-jp-13b-instruct-full-dolly... 105.2 (±14.5) 0.675 0.811 0.247
155 0.5754 (±0.0182/√100) 🟢 Xwin-LM/Xwin-LM-70B-V0.1 105.4 (±26.8) 0.681 0.833 0.213
156 0.5737 (±0.0209/√100) 🟢 microsoft/Phi-3-medium-128k-instruct 107.7 (±24.7) 0.674 0.825 0.223
157 0.5735 (±0.0216/√100) 🟢 google/gemma-2-9b-it 95.9 (±22.0) 0.674 0.837 0.209
158 0.5734 (±0.1980/√100) 💬 tokyotech-llm/Swallow-70b-instruct-hf 130.9 (±105.0) 0.636 0.758 0.326
159 0.5724 (±0.0209/√100) 🟢 rinna/llama-3-youko-70b 104.6 (±20.6) 0.681 0.826 0.210
160 0.5716 (±0.0230/√100) 🟢 sbintuitions/sarashina2.1-1b 116.9 (±41.3) 0.668 0.821 0.226
161 0.5712 (±0.0194/√100) 💬 karakuri-ai/karakuri-lm-8x7b-chat-v0.1 244.4 (±49.3) 0.678 0.816 0.220
162 0.5710 (±0.0198/√100) 🟢 mistralai/Mistral-Small-24B-Instruct-... 114.2 (±30.2) 0.684 0.797 0.232
163 0.5710 (±0.0226/√100) 🟢 rinna/llama-3-youko-8b-instruct 111.6 (±23.4) 0.672 0.809 0.232
164 0.5659 (±0.0234/√100) 🟢 meta-llama/Meta-Llama-3.1-70B 103.7 (±20.1) 0.665 0.822 0.211
165 0.5656 (±0.0226/√100) 💬 meta-llama/Meta-Llama-3-70B-Instruct 110.2 (±36.4) 0.665 0.777 0.254
166 0.5646 (±0.0240/√100) 💬 microsoft/Phi-3-medium-4k-instruct 131.3 (±50.6) 0.633 0.807 0.253
167 0.5642 (±0.0261/√100) 🟢 stabilityai/japanese-stablelm-instruc... 105.1 (±19.5) 0.646 0.799 0.247
168 0.5620 (±0.0254/√100) 🟢 meta-llama/Meta-Llama-3-70B 102.0 (±17.2) 0.664 0.809 0.213
169 0.5590 (±0.0456/√100) 💬 mistralai/Mistral-Small-24B-Instruct-... 105.3 (±42.8) 0.648 0.794 0.235
170 0.5588 (±0.0230/√100) 🟢 stabilityai/japanese-stablelm-instruc... 105.6 (±17.0) 0.673 0.812 0.191
171 0.5574 (±0.0216/√100) 🟢 rinna/nekomata-7b 108.4 (±18.0) 0.678 0.816 0.178
172 0.5569 (±0.0244/√100) 🟢 rinna/llama-3-youko-8b 104.9 (±17.0) 0.670 0.813 0.188
173 0.5568 (±0.0200/√100) 🟢 meta-llama/Meta-Llama-3-70B-Instruct 111.8 (±55.9) 0.655 0.780 0.236
174 0.5562 (±0.0952/√100) 💬 stockmark/stockmark-13b-instruct 137.2 (±89.6) 0.633 0.798 0.238
175 0.5540 (±0.0773/√100) 💬 mistralai/Mistral-Small-24B-Instruct-... 101.9 (±38.4) 0.640 0.773 0.248
176 0.5537 (±0.0204/√100) 🟢 tokyotech-llm/Llama-3-Swallow-8B-Inst... 114.4 (±48.5) 0.657 0.812 0.192
177 0.5531 (±0.0215/√100) 💬 llm-jp/llm-jp-3-7.2b-instruct3 389.6 (±127.7) 0.641 0.787 0.231
178 0.5516 (±0.1016/√100) 💬 cyberagent/calm2-7b-chat-dpo-experime... 181.1 (±120.1) 0.644 0.775 0.236
179 0.5514 (±0.0270/√100) 💬 llm-jp/llm-jp-3-13b-instruct2 365.5 (±161.5) 0.630 0.783 0.241
180 0.5511 (±0.0203/√100) 🟢 google/gemma-2-27b-it 110.3 (±56.8) 0.599 0.836 0.218
181 0.5500 (±0.0605/√100) 💬 tokyotech-llm/Llama-3-Swallow-70B-Ins... 156.5 (±106.5) 0.633 0.780 0.237
182 0.5500 (±0.0467/√100) 💬 tokyotech-llm/Swallow-7b-instruct-hf 121.9 (±77.3) 0.612 0.812 0.225
183 0.5486 (±0.0251/√100) 💬 llm-jp/llm-jp-3-7.2b-instruct2 418.2 (±130.6) 0.637 0.786 0.223
184 0.5469 (±0.0271/√100) 💬 llm-jp/llm-jp-3-172b-instruct2 372.9 (±157.4) 0.619 0.780 0.242
185 0.5465 (±0.0244/√100) 🟢 SakanaAI/TinySwallow-1.5B-Instruct 105.0 (±26.9) 0.657 0.807 0.176
186 0.5437 (±0.0218/√100) 💬 Xwin-LM/Xwin-LM-70B-V0.1 200.7 (±63.1) 0.652 0.782 0.198
187 0.5436 (±0.0246/√100) 🟢 llm-jp/llm-jp-3-3.7b 101.3 (±10.4) 0.646 0.795 0.189
188 0.5432 (±0.0208/√100) 💬 CohereForAI/c4ai-command-r-plus 48.9 (±16.5) 0.505 0.931 0.194
189 0.5429 (±0.0238/√100) 🟢 meta-llama/Meta-Llama-3.1-70B-Instruct 157.6 (±221.7) 0.636 0.770 0.222
190 0.5419 (±0.0234/√100) 🟢 Qwen/Qwen2.5-14B 109.3 (±43.0) 0.648 0.790 0.188
191 0.5416 (±0.0232/√100) 🟢 llm-jp/llm-jp-3-1.8b-instruct2 114.0 (±31.8) 0.651 0.797 0.177
192 0.5406 (±0.0287/√100) 💬 llm-jp/llm-jp-3-13b-instruct 382.1 (±163.5) 0.615 0.771 0.236
193 0.5387 (±0.0269/√100) 💬 rinna/llama-3-youko-8b-instruct 265.4 (±104.1) 0.635 0.771 0.210
194 0.5386 (±0.0215/√100) 💬 microsoft/Phi-3-medium-128k-instruct 91.9 (±44.7) 0.589 0.834 0.193
195 0.5377 (±0.0481/√100) 💬 meta-llama/Meta-Llama-3.1-70B-Instruct 135.8 (±194.8) 0.617 0.779 0.218
196 0.5359 (±0.0214/√100) 🟢 llm-jp/llm-jp-3-1.8b-instruct3 117.5 (±35.4) 0.640 0.786 0.181
197 0.5349 (±0.0203/√100) 💬 google/gemma-2-27b-it 74.7 (±42.7) 0.545 0.874 0.186
198 0.5347 (±0.0188/√100) 🟢 rinna/youri-7b 107.6 (±16.3) 0.654 0.802 0.148
199 0.5330 (±0.0238/√100) 💬 llm-jp/llm-jp-3-7.2b-instruct 406.7 (±152.5) 0.621 0.770 0.208
200 0.5316 (±0.0273/√100) 💬 lightblue/karasu-7B-chat 111.8 (±46.5) 0.621 0.800 0.174
201 0.5301 (±0.0476/√100) 💬 lightblue/karasu-7B-chat-plus 107.1 (±46.7) 0.615 0.798 0.178
202 0.5283 (±0.0309/√100) 💬 SakanaAI/TinySwallow-1.5B-Instruct 117.7 (±61.8) 0.616 0.801 0.168
203 0.5283 (±0.0585/√100) 💬 lightblue/karasu-7B-chat-plus-unleashed 104.6 (±45.3) 0.614 0.794 0.177
204 0.5275 (±0.0197/√100) 🟢 pfnet/plamo-2-1b 110.2 (±32.5) 0.627 0.815 0.141
205 0.5223 (±0.0441/√100) 🟢 Fugaku-LLM/Fugaku-LLM-13B 94.2 (±20.5) 0.588 0.818 0.161
206 0.5199 (±0.0281/√100) 🟢 llm-jp/llm-jp-3-172b-alpha2 104.6 (±22.2) 0.606 0.782 0.171
207 0.5190 (±0.0203/√100) 🟢 mistralai/Mistral-Small-24B-Base-2501 107.2 (±32.7) 0.626 0.771 0.160
208 0.5179 (±0.0264/√100) 🟢 cyberagent/calm2-7b 106.0 (±26.2) 0.601 0.770 0.182
209 0.5164 (±0.0209/√100) 🟢 llm-jp/llm-jp-13b-instruct-full-jaste... 109.3 (±33.5) 0.606 0.788 0.155
210 0.5143 (±0.0212/√100) 🟢 llm-jp/llm-jp-13b-v2.0 104.1 (±11.2) 0.604 0.760 0.180
211 0.5143 (±0.0170/√100) 🟢 moneyforward/houou-instruction-7b-v3 112.2 (±37.8) 0.629 0.778 0.135
212 0.5122 (±0.0132/√100) 💬 Qwen/Qwen2.5-7B-Instruct 69.5 (±28.7) 0.557 0.847 0.132
213 0.5119 (±0.0190/√100) 💬 llm-jp/llm-jp-3-3.7b-instruct3 360.0 (±134.7) 0.594 0.753 0.189
214 0.5111 (±0.0203/√100) 🟢 llm-jp/llm-jp-3-1.8b-instruct 113.1 (±33.9) 0.615 0.772 0.147
215 0.5103 (±0.0204/√100) 💬 llm-jp/llm-jp-3-3.7b-instruct 441.6 (±144.2) 0.606 0.750 0.175
216 0.5085 (±0.0160/√100) 🟢 moneyforward/houou-instruction-7b-v1 105.9 (±41.0) 0.617 0.781 0.128
217 0.5080 (±0.0306/√100) 💬 stabilityai/japanese-stablelm-instruc... 111.3 (±58.3) 0.548 0.782 0.195
218 0.5073 (±0.0208/√100) 💬 Qwen/Qwen2-57B-A14B-Instruct 154.8 (±89.5) 0.615 0.734 0.173
219 0.5045 (±0.0208/√100) 🟢 Qwen/Qwen2-57B-A14B 106.7 (±22.5) 0.617 0.757 0.139
220 0.5041 (±0.0225/√100) 🟢 llm-jp/llm-jp-13b-instruct-full-dolly... 106.2 (±29.3) 0.579 0.778 0.155
221 0.5037 (±0.0264/√100) 💬 llm-jp/llm-jp-3-3.7b-instruct2 365.8 (±145.5) 0.590 0.746 0.175
222 0.5022 (±0.0221/√100) 🟢 llm-jp/llm-jp-13b-instruct-full-jaste... 95.0 (±36.2) 0.579 0.795 0.132
223 0.5013 (±0.0196/√100) 🟢 google/gemma-2-9b 107.3 (±26.0) 0.595 0.761 0.148
224 0.5013 (±0.0375/√100) 💬 karakuri-ai/karakuri-lm-70b-chat-v0.1 427.4 (±151.5) 0.579 0.723 0.202
225 0.5006 (±0.0476/√100) 💬 llm-jp/llm-jp-3-1.8b-instruct3 223.2 (±122.4) 0.590 0.744 0.168
226 0.5002 (±0.0218/√100) 🟢 Qwen/Qwen-72B-Chat 223.0 (±258.3) 0.614 0.716 0.171
227 0.4995 (±0.0211/√100) 💬 Qwen/Qwen1.5-72B-Chat 119.3 (±58.1) 0.582 0.708 0.208
228 0.4970 (±0.0117/√100) 💬 Qwen/Qwen2.5-7B-Instruct 65.0 (±22.0) 0.535 0.858 0.098
229 0.4963 (±0.0189/√100) 🟢 Qwen/Qwen1.5-72B-Chat 128.1 (±77.7) 0.586 0.698 0.206
230 0.4959 (±0.0235/√100) 🟢 llm-jp/llm-jp-13b-v1.0 115.0 (±40.9) 0.576 0.756 0.156
231 0.4955 (±0.0602/√100) 💬 llm-jp/llm-jp-3-1.8b-instruct2 194.1 (±123.5) 0.581 0.740 0.166
232 0.4953 (±0.0203/√100) 🟢 meta-llama/Llama-2-70b-hf 110.4 (±25.8) 0.596 0.745 0.145
233 0.4949 (±0.0177/√100) 💬 moneyforward/houou-instruction-7b-v1 180.5 (±66.6) 0.604 0.734 0.146
234 0.4931 (±0.0247/√100) 🟢 Rakuten/RakutenAI-7B-instruct 105.6 (±33.1) 0.598 0.750 0.132
235 0.4921 (±0.0219/√100) 🟢 Rakuten/RakutenAI-7B-chat 114.9 (±44.7) 0.592 0.760 0.124
236 0.4921 (±0.0285/√100) 💬 llm-jp/llm-jp-3-1.8b-instruct 185.0 (±120.2) 0.585 0.752 0.140
237 0.4916 (±0.0201/√100) 🟢 moneyforward/houou-instruction-7b-v2 104.7 (±41.2) 0.588 0.770 0.116
238 0.4912 (±0.0399/√100) 💬 SakanaAI/TinySwallow-1.5B-Instruct 222.0 (±126.2) 0.594 0.735 0.145
239 0.4895 (±0.0440/√100) 💬 llm-jp/llm-jp-13b-instruct-full-dolly... 268.1 (±133.1) 0.548 0.722 0.199
240 0.4872 (±0.0237/√100) 🟢 lightblue/karasu-7B 110.1 (±19.0) 0.586 0.739 0.137
241 0.4870 (±0.0215/√100) 🟢 Qwen/Qwen-72B 134.6 (±114.6) 0.593 0.715 0.152
242 0.4868 (±0.0163/√100) 💬 google/gemma-2-9b-it 47.6 (±14.6) 0.477 0.880 0.104
243 0.4863 (±0.1167/√100) 💬 pfnet/nekomata-14b-pfn-qfin-inst-merge 93.4 (±55.0) 0.544 0.721 0.194
244 0.4862 (±0.0221/√100) 🟢 Qwen/Qwen2-57B-A14B-Instruct 116.9 (±82.5) 0.601 0.734 0.124
245 0.4857 (±0.0168/√100) 💬 moneyforward/houou-instruction-7b-v2 207.0 (±57.3) 0.591 0.719 0.147
246 0.4829 (±0.0211/√100) 🟢 Qwen/Qwen1.5-72B 136.2 (±85.6) 0.591 0.705 0.153
247 0.4827 (±0.0464/√100) 💬 llm-jp/llm-jp-13b-instruct-full-ac_00... 269.1 (±131.5) 0.542 0.716 0.191
248 0.4762 (±0.0810/√100) 💬 stabilityai/japanese-stablelm-instruc... 126.2 (±67.4) 0.545 0.726 0.158
249 0.4746 (±0.0210/√100) 🟢 rinna/youri-7b-chat 102.1 (±16.4) 0.571 0.752 0.100
250 0.4744 (±0.0227/√100) 🟢 pfnet/plamo-13b 108.2 (±28.5) 0.558 0.749 0.116
251 0.4743 (±0.0987/√100) 💬 tokyotech-llm/Swallow-7b-NVE-instruct-hf 129.0 (±72.8) 0.535 0.725 0.163
252 0.4730 (±0.0166/√100) 🟢 Xwin-LM/Xwin-LM-13B-V0.2 109.7 (±27.4) 0.582 0.723 0.114
253 0.4723 (±0.0204/√100) 💬 Rakuten/RakutenAI-7B-chat 233.0 (±133.0) 0.565 0.734 0.118
254 0.4723 (±0.0808/√100) 💬 tokyotech-llm/Llama-3-Swallow-8B-Inst... 199.3 (±155.6) 0.563 0.699 0.154
255 0.4698 (±0.0200/√100) 🟢 Rakuten/RakutenAI-7B 105.4 (±25.6) 0.576 0.721 0.113
256 0.4692 (±0.0161/√100) 🟢 shisa-ai/shisa-v1-qwen2-7b 109.0 (±23.9) 0.563 0.712 0.133
257 0.4683 (±0.0211/√100) 💬 llm-jp/llm-jp-3-1.8b-instruct3 402.8 (±140.7) 0.552 0.720 0.133
258 0.4674 (±0.0211/√100) 🟢 Qwen/Qwen2.5-7B 111.5 (±51.4) 0.563 0.707 0.132
259 0.4670 (±0.0202/√100) 💬 llm-jp/llm-jp-3-1.8b-instruct2 400.7 (±146.8) 0.556 0.721 0.124
260 0.4661 (±0.0210/√100) 🟢 llm-jp/llm-jp-13b-instruct-full-dolly... 111.6 (±44.2) 0.536 0.756 0.106
261 0.4659 (±0.0438/√100) 💬 deepseek-ai/deepseek-llm-67b-chat 146.0 (±62.1) 0.555 0.703 0.139
262 0.4659 (±0.0202/√100) 🟢 llm-jp/llm-jp-3-1.8b 105.0 (±16.9) 0.568 0.725 0.105
263 0.4648 (±0.1659/√100) 💬 cyberagent/calm2-7b-chat 124.7 (±95.9) 0.536 0.688 0.171
264 0.4622 (±0.0195/√100) 🟢 Qwen/Qwen-14B-Chat 135.5 (±84.3) 0.572 0.718 0.097
265 0.4619 (±0.0162/√100) 💬 lmsys/vicuna-13b-v1.5-16k 126.5 (±48.4) 0.574 0.715 0.097
266 0.4609 (±0.0113/√10) 🟢 google/gemma-2-2b-jpn-it 69.4 (±24.1) 0.509 0.805 0.069
267 0.4607 (±0.0165/√100) 🟢 SakanaAI/EvoLLM-JP-v1-7B 111.2 (±30.4) 0.579 0.708 0.095
268 0.4601 (±0.0184/√100) 🟢 shisa-ai/shisa-v1-llama3-8b 112.9 (±31.4) 0.557 0.703 0.120
269 0.4597 (±0.0268/√100) 🟢 CohereForAI/c4ai-command-r-v01 179.2 (±166.3) 0.590 0.592 0.197
270 0.4586 (±0.0141/√100) 🟢 google/gemma-2-2b-it 88.2 (±30.8) 0.536 0.761 0.079
271 0.4578 (±0.0210/√100) 🟢 llm-jp/llm-jp-3-980m-instruct2 112.3 (±46.7) 0.559 0.723 0.091
272 0.4570 (±0.0253/√100) 🟢 llm-jp/llm-jp-3-172b-alpha1 111.1 (±34.7) 0.530 0.715 0.126
273 0.4561 (±0.0202/√100) 🟢 pfnet/plamo-13b-instruct 144.0 (±147.7) 0.532 0.763 0.073
274 0.4559 (±0.0201/√100) 🟢 pfnet/plamo-13b-instruct-nc 156.0 (±183.1) 0.523 0.768 0.077
275 0.4558 (±0.0156/√100) 🟢 rinna/japanese-gpt-neox-3.6b-instruct... 75.3 (±26.6) 0.488 0.804 0.076
276 0.4543 (±0.0217/√100) 🟢 rinna/youri-7b-instruction 96.2 (±29.5) 0.530 0.743 0.090
277 0.4535 (±0.0348/√100) 💬 Rakuten/RakutenAI-7B-instruct 128.6 (±83.2) 0.527 0.726 0.108
278 0.4535 (±0.0183/√100) 🟢 THUDM/glm-4-9b 110.3 (±36.9) 0.554 0.689 0.118
279 0.4527 (±0.0146/√100) 🟢 lmsys/vicuna-13b-v1.5-16k 107.9 (±25.9) 0.576 0.708 0.075
280 0.4525 (±0.0187/√100) 💬 llm-jp/llm-jp-3-1.8b-instruct 435.4 (±148.4) 0.553 0.706 0.098
281 0.4504 (±0.0224/√100) 🟢 rinna/nekomata-7b-instruction 96.4 (±23.7) 0.528 0.734 0.089
282 0.4486 (±0.0161/√100) 💬 Qwen/Qwen2-7B-Instruct 163.6 (±61.4) 0.547 0.688 0.111
283 0.4484 (±0.0191/√100) 💬 SakanaAI/EvoLLM-JP-v1-7B 123.9 (±68.1) 0.545 0.706 0.094
284 0.4477 (±0.0205/√100) 🟢 rinna/llama-3-youko-70b-instruct 130.7 (±95.3) 0.527 0.670 0.146
285 0.4459 (±0.0202/√100) 🟢 llm-jp/llm-jp-3-980m-instruct3 116.0 (±33.5) 0.545 0.707 0.086
286 0.4426 (±0.0204/√100) 🟢 elyza/ELYZA-japanese-Llama-2-13b-inst... 111.1 (±28.2) 0.544 0.687 0.097
287 0.4409 (±0.1064/√100) 💬 lightblue/karasu-7B 138.1 (±92.9) 0.512 0.679 0.131
288 0.4404 (±0.0146/√100) 🟢 rinna/bilingual-gpt-neox-4b-instructi... 75.9 (±22.7) 0.493 0.773 0.056
289 0.4387 (±0.0655/√100) 💬 Qwen/Qwen-72B-Chat 117.7 (±137.1) 0.541 0.632 0.143
290 0.4385 (±0.0285/√100) 💬 rinna/youri-7b-chat 95.4 (±41.1) 0.500 0.733 0.083
291 0.4377 (±0.0107/√100) 🟢 google/gemma-1.1-7b-it 86.8 (±21.4) 0.509 0.732 0.072
292 0.4374 (±0.0217/√100) 🟢 Qwen/Qwen1.5-32B-Chat 127.0 (±57.0) 0.538 0.642 0.133
293 0.4368 (±0.0575/√100) 💬 llm-jp/llm-jp-3-980m-instruct2 195.9 (±127.8) 0.529 0.686 0.096
294 0.4336 (±0.0168/√100) 🟢 stabilityai/japanese-stablelm-base-be... 107.1 (±17.2) 0.539 0.689 0.073
295 0.4335 (±0.0221/√100) 🟢 Qwen/Qwen-14B 118.1 (±71.6) 0.530 0.675 0.096
296 0.4332 (±0.0164/√100) 🟢 Qwen/Qwen2-7B-Instruct 119.1 (±45.7) 0.531 0.670 0.098
297 0.4330 (±0.0149/√100) 💬 google/gemma-2-2b-it 56.0 (±27.8) 0.445 0.788 0.066
298 0.4320 (±0.0171/√100) 🟢 Qwen/Qwen2-7B 109.1 (±40.1) 0.532 0.671 0.093
299 0.4296 (±0.0322/√100) 💬 Qwen/Qwen-14B-Chat 159.0 (±69.7) 0.522 0.675 0.092
300 0.4295 (±0.0157/√100) 🟢 elyza/ELYZA-japanese-Llama-2-7b-instruct 111.5 (±31.4) 0.530 0.676 0.083
301 0.4292 (±0.0181/√100) 💬 Xwin-LM/Xwin-LM-13B-V0.2 240.7 (±48.4) 0.533 0.670 0.085
302 0.4282 (±0.0193/√100) 🟢 stabilityai/japanese-stablelm-3b-4e1t... 110.8 (±26.0) 0.518 0.688 0.078
303 0.4272 (±0.0273/√100) 🟢 mistralai/Mistral-Nemo-Instruct-2407 155.8 (±132.8) 0.548 0.611 0.122
304 0.4265 (±0.0115/√100) 💬 google/gemma-1.1-7b-it 78.7 (±28.4) 0.475 0.739 0.066
305 0.4256 (±0.0270/√100) 🟢 rinna/japanese-gpt-neox-3.6b 129.8 (±73.4) 0.485 0.685 0.106
306 0.4228 (±0.0185/√100) 🟢 stabilityai/japanese-stablelm-base-ja... 110.4 (±28.6) 0.528 0.668 0.073
307 0.4222 (±0.0138/√100) 🟢 Xwin-LM/Xwin-LM-7B-V0.2 110.6 (±29.3) 0.520 0.677 0.070
308 0.4220 (±0.0185/√100) 🟢 lmsys/vicuna-7b-v1.5-16k 111.8 (±31.8) 0.522 0.670 0.074
309 0.4207 (±0.0189/√100) 🟢 stabilityai/japanese-stablelm-3b-4e1t... 112.8 (±27.0) 0.507 0.683 0.072
310 0.4201 (±0.0177/√100) 💬 lmsys/vicuna-7b-v1.5-16k 128.1 (±52.5) 0.514 0.668 0.078
311 0.4164 (±0.0244/√100) 🟢 google/gemma-7b 135.5 (±132.3) 0.533 0.631 0.085
312 0.4150 (±0.0212/√100) 💬 Qwen/Qwen1.5-32B-Chat 125.7 (±250.5) 0.496 0.620 0.130
313 0.4149 (±0.0375/√100) 💬 llm-jp/llm-jp-13b-instruct-full-dolly... 186.6 (±108.4) 0.469 0.685 0.090
314 0.4144 (±0.0149/√100) 💬 01-ai/Yi-1.5-34B-Chat 170.6 (±47.1) 0.514 0.628 0.101
315 0.4140 (±0.0208/√100) 🟢 meta-llama/Meta-Llama-3-8B-Instruct 116.8 (±44.3) 0.523 0.637 0.082
316 0.4125 (±0.0303/√100) 💬 CohereForAI/c4ai-command-r-v01 137.7 (±324.6) 0.519 0.562 0.157
317 0.4122 (±0.0199/√100) 🟢 rinna/bilingual-gpt-neox-4b 121.0 (±43.6) 0.485 0.660 0.092
318 0.4097 (±0.0187/√100) 🟢 meta-llama/Meta-Llama-3.1-8B 108.7 (±35.4) 0.512 0.650 0.068
319 0.4087 (±0.0201/√100) 🟢 meta-llama/Llama-2-70b-chat-hf 161.3 (±140.8) 0.519 0.608 0.099
320 0.4087 (±0.0146/√100) 🟢 microsoft/Phi-3-small-8k-instruct 109.1 (±24.1) 0.514 0.644 0.068
321 0.4080 (±0.0206/√100) 💬 llm-jp/llm-jp-3-980m-instruct2 430.8 (±147.5) 0.505 0.653 0.067
322 0.4076 (±0.0142/√100) 🟢 elyza/ELYZA-japanese-Llama-2-7b-fast-... 109.0 (±32.9) 0.503 0.644 0.076
323 0.4074 (±0.0207/√100) 💬 elyza/ELYZA-japanese-Llama-2-13b-inst... 156.6 (±65.9) 0.490 0.646 0.086
324 0.4073 (±0.0175/√100) 🟢 stabilityai/japanese-stablelm-instruc... 110.0 (±26.5) 0.490 0.663 0.070
325 0.4058 (±0.0295/√100) 💬 rinna/youri-7b-instruction 97.0 (±57.0) 0.439 0.713 0.065
326 0.4050 (±0.0191/√100) 🟢 mistralai/Mixtral-8x22B-v0.1 115.6 (±55.4) 0.517 0.615 0.084
327 0.4048 (±0.0175/√100) 🟢 meta-llama/Meta-Llama-3-8B 109.0 (±19.8) 0.505 0.641 0.068
328 0.4048 (±0.0263/√20) 💬 ntt/tsuzumi-7b 172.0 (±90.8) 0.491 0.644 0.080
329 0.4045 (±0.0186/√100) 🟢 rinna/japanese-gpt-neox-3.6b-instruct... 133.1 (±57.4) 0.475 0.678 0.061
330 0.4042 (±0.0131/√100) 🟢 microsoft/Orca-2-13b 115.5 (±42.6) 0.510 0.630 0.073
331 0.4041 (±0.0218/√100) 💬 meta-llama/Meta-Llama-3-8B-Instruct 131.4 (±88.3) 0.508 0.614 0.090
332 0.4035 (±0.0151/√100) 🟢 SakanaAI/EvoLLM-JP-A-v1-7B 110.4 (±31.3) 0.508 0.633 0.069
333 0.4033 (±0.0164/√100) 🟢 elyza/ELYZA-japanese-Llama-2-13b-fast... 107.2 (±28.5) 0.495 0.643 0.072
334 0.4032 (±0.0237/√100) 🟢 Qwen/Qwen1.5-32B 150.3 (±104.8) 0.505 0.605 0.100
335 0.4024 (±0.0187/√100) 🟢 01-ai/Yi-1.5-34B 109.9 (±28.2) 0.493 0.631 0.083
336 0.4013 (±0.0162/√100) 🟢 Qwen/Qwen2.5-3B 113.3 (±35.0) 0.504 0.628 0.072
337 0.4011 (±0.0236/√100) 🟢 cyberagent/open-calm-7b 143.8 (±97.0) 0.472 0.641 0.091
338 0.4006 (±0.0166/√100) 💬 microsoft/Phi-3-small-8k-instruct 189.7 (±84.1) 0.500 0.630 0.073
339 0.4001 (±0.0199/√100) 🟢 rinna/japanese-gpt-neox-3.6b-instruct... 117.6 (±48.9) 0.464 0.684 0.052
340 0.3985 (±0.0161/√100) 🟢 elyza/ELYZA-japanese-Llama-2-13b 138.4 (±51.8) 0.493 0.634 0.069
341 0.3960 (±0.0199/√100) 🟢 line-corporation/japanese-large-lm-1.7b 179.2 (±174.5) 0.474 0.650 0.065
342 0.3953 (±0.0207/√100) 💬 llm-jp/llm-jp-3-980m-instruct3 404.7 (±156.1) 0.482 0.637 0.067
343 0.3949 (±0.0193/√100) 💬 meta-llama/Meta-Llama-3.1-8B-Instruct 216.6 (±345.2) 0.487 0.624 0.074
344 0.3948 (±0.0190/√100) 💬 Qwen/Qwen1.5-14B-Chat 127.9 (±50.6) 0.500 0.604 0.080
345 0.3946 (±0.0201/√100) 🟢 Qwen/Qwen1.5-14B 130.9 (±67.8) 0.509 0.609 0.066
346 0.3934 (±0.0201/√100) 🟢 stabilityai/japanese-stablelm-instruc... 107.8 (±38.0) 0.466 0.648 0.066
347 0.3914 (±0.0172/√100) 🟢 mistralai/Mixtral-8x7B-Instruct-v0.1 95.1 (±25.2) 0.488 0.636 0.050
348 0.3863 (±0.0160/√100) 🟢 Qwen/Qwen1.5-14B-Chat 131.4 (±55.8) 0.491 0.593 0.075
349 0.3837 (±0.0188/√100) 🟢 rinna/bilingual-gpt-neox-4b-instructi... 117.4 (±42.4) 0.462 0.649 0.041
350 0.3828 (±0.0182/√100) 🟢 google/gemma-2-2b 112.5 (±25.6) 0.486 0.616 0.046
351 0.3823 (±0.0645/√100) 💬 mistralai/Mistral-Nemo-Instruct-2407 157.9 (±140.3) 0.484 0.563 0.100
352 0.3822 (±0.0647/√100) 💬 llm-jp/llm-jp-13b-instruct-full-dolly... 97.6 (±76.2) 0.397 0.664 0.086
353 0.3819 (±0.0265/√100) 🟢 google/gemma-2-27b 214.2 (±183.3) 0.450 0.608 0.087
354 0.3804 (±0.0161/√100) 🟢 Qwen/Qwen-7B-Chat 140.8 (±65.1) 0.485 0.612 0.045
355 0.3803 (±0.0249/√100) 💬 elyza/ELYZA-japanese-Llama-2-7b-instruct 136.4 (±70.7) 0.452 0.619 0.070
356 0.3777 (±0.0196/√100) 🟢 llm-jp/llm-jp-3-980m 101.6 (±20.5) 0.460 0.631 0.043
357 0.3772 (±0.0162/√100) 💬 microsoft/Phi-3-small-128k-instruct 199.7 (±111.9) 0.473 0.590 0.069
358 0.3760 (±0.0236/√100) 🟢 cyberagent/open-calm-3b 123.2 (±79.0) 0.442 0.624 0.062
359 0.3759 (±0.0149/√100) 🟢 lmsys/longchat-7b-v1.5-32k 116.9 (±31.6) 0.474 0.609 0.045
360 0.3740 (±0.0164/√100) 🟢 meta-llama/Llama-2-13b-hf 108.5 (±21.8) 0.474 0.603 0.045
361 0.3737 (±0.0197/√100) 🟢 meta-llama/Meta-Llama-3.1-8B-Instruct 204.5 (±303.4) 0.478 0.589 0.055
362 0.3728 (±0.0210/√100) 🟢 llm-jp/llm-jp-3-440m-instruct2 110.0 (±37.1) 0.455 0.625 0.040
363 0.3720 (±0.0622/√100) 💬 Xwin-LM/Xwin-LM-7B-V0.2 205.3 (±79.1) 0.466 0.590 0.060
364 0.3720 (±0.0157/√100) 🟢 elyza/ELYZA-japanese-Llama-2-13b-fast 177.5 (±147.2) 0.458 0.598 0.061
365 0.3699 (±0.0345/√100) 💬 Qwen/Qwen-7B-Chat 182.9 (±110.3) 0.468 0.600 0.042
366 0.3694 (±0.0103/√100) 🟢 google/gemma-7b-it 89.7 (±21.6) 0.446 0.640 0.022
367 0.3685 (±0.0173/√100) 🟢 elyza/ELYZA-japanese-Llama-2-7b 140.0 (±52.8) 0.462 0.596 0.047
368 0.3673 (±0.0089/√100) 💬 google/gemma-7b-it 110.0 (±47.6) 0.448 0.633 0.020
369 0.3655 (±0.0116/√100) 🟢 deepseek-ai/deepseek-llm-7b-chat 113.9 (±24.7) 0.474 0.579 0.043
370 0.3642 (±0.0165/√100) 🟢 llm-jp/llm-jp-1.3b-v1.0 134.0 (±62.6) 0.437 0.612 0.044
371 0.3637 (±0.0223/√100) 🟢 cyberagent/open-calm-large 122.3 (±73.9) 0.424 0.611 0.056
372 0.3637 (±0.0152/√100) 🟢 elyza/ELYZA-japanese-Llama-2-7b-fast 168.0 (±77.4) 0.452 0.587 0.052
373 0.3632 (±0.0237/√100) 💬 elyza/ELYZA-japanese-Llama-2-7b-fast-... 178.6 (±113.6) 0.443 0.582 0.064
374 0.3630 (±0.0234/√100) 🟢 llm-jp/llm-jp-3-440m-instruct3 115.2 (±40.1) 0.442 0.605 0.042
375 0.3628 (±0.0145/√100) 🟢 Qwen/Qwen-7B 117.3 (±39.0) 0.468 0.582 0.039
376 0.3611 (±0.0544/√100) 💬 llm-jp/llm-jp-3-440m-instruct2 244.7 (±154.0) 0.451 0.588 0.044
377 0.3589 (±0.0394/√100) 💬 llm-jp/llm-jp-3-440m-instruct3 286.6 (±158.5) 0.448 0.582 0.047
378 0.3554 (±0.0178/√100) 🟢 meta-llama/Llama-2-7b-chat-hf 139.3 (±93.1) 0.464 0.570 0.031
379 0.3545 (±0.0445/√100) 💬 llm-jp/llm-jp-13b-instruct-full-jaste... 48.8 (±50.1) 0.283 0.723 0.058
380 0.3543 (±0.0439/√100) 💬 lmsys/longchat-7b-v1.5-32k 160.1 (±73.5) 0.448 0.572 0.043
381 0.3538 (±0.0175/√100) 🟢 01-ai/Yi-1.5-9B 113.0 (±29.4) 0.457 0.555 0.050
382 0.3531 (±0.0159/√100) 🟢 mistralai/Mixtral-8x7B-v0.1 94.3 (±20.8) 0.450 0.573 0.037
383 0.3514 (±0.0102/√100) 🟢 google/gemma-1.1-2b-it 80.4 (±21.6) 0.404 0.625 0.025
384 0.3495 (±0.0268/√100) 🟢 cyberagent/open-calm-1b 141.3 (±110.0) 0.412 0.578 0.059
385 0.3477 (±0.0244/√100) 💬 llm-jp/llm-jp-3-440m-instruct2 432.3 (±161.3) 0.432 0.568 0.043
386 0.3471 (±0.0131/√100) 🟢 microsoft/Orca-2-7b 131.1 (±70.7) 0.447 0.555 0.039
387 0.3465 (±0.0202/√100) 💬 deepseek-ai/deepseek-llm-7b-chat 167.2 (±76.5) 0.435 0.562 0.042
388 0.3463 (±0.0178/√100) 💬 mistralai/Mixtral-8x7B-Instruct-v0.1 147.1 (±111.8) 0.448 0.548 0.043
389 0.3449 (±0.0986/√100) 💬 stabilityai/japanese-stablelm-instruc... 109.4 (±66.2) 0.397 0.585 0.053
390 0.3440 (±0.0978/√100) 💬 stabilityai/japanese-stablelm-3b-4e1t... 127.8 (±80.5) 0.401 0.576 0.055
391 0.3436 (±0.0126/√100) 💬 01-ai/Yi-1.5-9B-Chat 143.6 (±60.1) 0.438 0.540 0.053
392 0.3428 (±0.0163/√100) 🟢 meta-llama/Llama-2-7b-hf 112.3 (±28.0) 0.440 0.550 0.038
393 0.3408 (±0.0225/√100) 🟢 anthracite-org/magnum-32b-v2 191.9 (±223.2) 0.442 0.507 0.073
394 0.3393 (±0.0225/√100) 🟢 stockmark/gpt-neox-japanese-1.4b 92.2 (±63.7) 0.351 0.641 0.025
395 0.3338 (±0.0493/√100) 🟢 SakanaAI/TinySwallow-1.5B 142.2 (±109.9) 0.415 0.534 0.052
396 0.3322 (±0.0151/√100) 🟢 Qwen/Qwen1.5-7B-Chat 127.7 (±117.0) 0.431 0.520 0.045
397 0.3320 (±0.0170/√100) 🟢 Qwen/Qwen2.5-1.5B 117.7 (±41.6) 0.431 0.533 0.032
398 0.3315 (±0.0203/√100) 🟢 Qwen/Qwen1.5-7B 141.8 (±126.5) 0.445 0.504 0.046
399 0.3313 (±0.0115/√100) 🟢 google/gemma-2b-it 85.9 (±24.7) 0.393 0.577 0.024
400 0.3293 (±0.0252/√100) 💬 Qwen/Qwen1.5-7B-Chat 195.7 (±113.1) 0.429 0.503 0.056
401 0.3276 (±0.0709/√100) 💬 elyza/ELYZA-japanese-Llama-2-13b-fast... 134.0 (±98.8) 0.395 0.543 0.045
402 0.3272 (±0.0101/√100) 💬 01-ai/Yi-1.5-6B-Chat 194.4 (±75.0) 0.426 0.530 0.025
403 0.3209 (±0.0175/√100) 💬 llm-jp/llm-jp-3-440m-instruct3 375.9 (±168.6) 0.391 0.533 0.039
404 0.3199 (±0.0181/√100) 🟢 llm-jp/llm-jp-3-440m 110.0 (±33.4) 0.390 0.543 0.027
405 0.3187 (±0.0142/√100) 🟢 Qwen/Qwen2-1.5B-Instruct 131.4 (±46.7) 0.421 0.513 0.022
406 0.3172 (±0.0150/√100) 🟢 Qwen/Qwen2-1.5B 120.9 (±30.7) 0.422 0.511 0.019
407 0.3161 (±0.0119/√100) 🟢 deepseek-ai/deepseek-llm-7b-base 113.7 (±21.6) 0.424 0.501 0.024
408 0.3147 (±0.0175/√100) 💬 Qwen/Qwen2-1.5B-Instruct 180.7 (±101.0) 0.408 0.511 0.025
409 0.3078 (±0.0195/√100) 🟢 cyberagent/open-calm-medium 117.3 (±59.4) 0.363 0.537 0.024
410 0.3058 (±0.1106/√100) 💬 rinna/nekomata-7b-instruction 61.2 (±57.0) 0.307 0.567 0.043
411 0.3053 (±0.0177/√100) 🟢 google/gemma-2b 151.5 (±113.6) 0.410 0.480 0.026
412 0.3050 (±0.0190/√100) 🟢 Qwen/Qwen1.5-MoE-A2.7B 146.4 (±90.3) 0.412 0.468 0.035
413 0.2993 (±0.0095/√100) 🟢 01-ai/Yi-1.5-6B-Chat 133.3 (±46.2) 0.394 0.481 0.022
414 0.2993 (±0.0107/√100) 🟢 tiiuae/falcon-11B 121.6 (±31.5) 0.398 0.483 0.016
415 0.2957 (±0.0641/√100) 💬 meta-llama/Llama-2-13b-chat-hf 305.2 (±299.7) 0.402 0.453 0.032
416 0.2953 (±0.0442/√100) 🟢 augmxnt/shisa-base-7b-v1 200.4 (±160.3) 0.378 0.478 0.030
417 0.2924 (±0.0506/√100) 💬 Qwen/Qwen1.5-MoE-A2.7B-Chat 245.1 (±209.1) 0.381 0.453 0.043
418 0.2914 (±0.0133/√100) 🟢 mistralai/Mistral-7B-v0.1 117.4 (±40.4) 0.402 0.454 0.018
419 0.2907 (±0.0175/√100) 🟢 Qwen/Qwen1.5-MoE-A2.7B-Chat 149.8 (±91.0) 0.388 0.448 0.036
420 0.2900 (±0.0226/√100) 💬 llm-jp/llm-jp-3-150m-instruct2 421.0 (±181.6) 0.365 0.485 0.020
421 0.2869 (±0.0214/√100) 🟢 llm-jp/llm-jp-3-150m-instruct2 108.9 (±41.1) 0.342 0.498 0.021
422 0.2853 (±0.0163/√100) 🟢 Qwen/Qwen1.5-4B-Chat 127.8 (±71.2) 0.395 0.441 0.019
423 0.2809 (±0.0133/√100) 🟢 Qwen/Qwen1.5-1.8B-Chat 178.3 (±92.0) 0.381 0.445 0.017
424 0.2799 (±0.0233/√100) 🟢 llm-jp/llm-jp-3-150m-instruct3 121.5 (±43.8) 0.340 0.478 0.022
425 0.2785 (±0.0179/√100) 💬 llm-jp/llm-jp-3-150m-instruct3 412.9 (±178.5) 0.344 0.470 0.021
426 0.2770 (±0.0131/√100) 🟢 mistralai/Mistral-7B-Instruct-v0.2 146.2 (±70.1) 0.387 0.419 0.024
427 0.2769 (±0.0324/√100) 💬 llm-jp/llm-jp-13b-instruct-full-jaste... 16.9 (±24.6) 0.125 0.693 0.013
428 0.2769 (±0.1029/√100) 💬 stabilityai/japanese-stablelm-instruc... 117.0 (±115.0) 0.307 0.489 0.035
429 0.2666 (±0.0241/√100) 🟢 deepseek-ai/deepseek-llm-67b-chat 140.2 (±83.0) 0.351 0.440 0.009
430 0.2661 (±0.0128/√100) 🟢 Qwen/Qwen1.5-1.8B 129.7 (±65.7) 0.360 0.424 0.014
431 0.2631 (±0.0168/√100) 🟢 Qwen/Qwen2.5-0.5B 126.3 (±53.1) 0.355 0.422 0.013
432 0.2613 (±0.0136/√100) 🟢 Qwen/Qwen2-0.5B-Instruct 176.8 (±98.9) 0.351 0.426 0.007
433 0.2604 (±0.0148/√100) 🟢 mistralai/Mistral-7B-Instruct-v0.1 139.8 (±101.3) 0.367 0.400 0.014
434 0.2598 (±0.0129/√100) 🟢 Qwen/Qwen2-0.5B 122.7 (±43.5) 0.350 0.420 0.009
435 0.2581 (±0.0196/√100) 🟢 cyberagent/open-calm-small 119.1 (±54.1) 0.310 0.460 0.004
436 0.2555 (±0.0163/√100) 🟢 Qwen/Qwen1.5-4B 149.2 (±76.6) 0.363 0.388 0.015
437 0.2543 (±0.0266/√100) 🟢 mosaicml/mpt-30b-chat 121.3 (±46.4) 0.327 0.428 0.008
438 0.2446 (±0.0204/√100) 🟢 llm-jp/llm-jp-3-150m 107.6 (±41.1) 0.297 0.427 0.009
439 0.2442 (±0.0589/√100) 💬 llm-jp/llm-jp-3-150m-instruct2 256.2 (±198.3) 0.304 0.410 0.019
440 0.2414 (±0.0281/√100) 💬 Qwen/Qwen1.5-1.8B-Chat 480.0 (±210.3) 0.329 0.392 0.003
441 0.2394 (±0.0745/√100) 💬 Qwen/Qwen1.5-4B-Chat 105.3 (±104.1) 0.307 0.390 0.021
442 0.2317 (±0.0455/√100) 💬 mistralai/Mistral-7B-Instruct-v0.1 202.3 (±153.9) 0.320 0.362 0.012
443 0.2231 (±0.0166/√100) 💬 mistralai/Mistral-7B-Instruct-v0.2 261.2 (±166.3) 0.316 0.334 0.019
444 0.2182 (±0.0152/√100) 🟢 microsoft/phi-1 47.6 (±34.3) 0.234 0.420 0.000
445 0.2177 (±0.0110/√100) 🟢 Qwen/Qwen1.5-0.5B-Chat 143.4 (±52.1) 0.317 0.327 0.009
446 0.2169 (±0.0561/√100) 💬 Qwen/Qwen2-0.5B-Instruct 129.5 (±114.3) 0.265 0.379 0.006
447 0.2169 (±0.0218/√100) 🟢 mosaicml/mpt-30b-instruct 109.8 (±36.1) 0.274 0.370 0.008
448 0.2146 (±0.0151/√100) 🟢 microsoft/phi-2 78.0 (±31.4) 0.287 0.356 0.001
449 0.2061 (±0.0820/√100) 💬 meta-llama/Llama-2-70b-chat-hf 523.3 (±444.5) 0.271 0.303 0.045
450 0.2040 (±0.0152/√100) 🟢 Qwen/Qwen1.5-0.5B 138.6 (±55.9) 0.296 0.314 0.003
451 0.2038 (±0.0538/√100) 🟢 mosaicml/mpt-30b 236.5 (±433.3) 0.271 0.334 0.007
452 0.2004 (±0.0736/√100) 💬 llm-jp/llm-jp-3-150m-instruct3 296.9 (±240.0) 0.251 0.335 0.015
453 0.1885 (±0.0194/√100) 🟢 microsoft/phi-1_5 77.5 (±33.6) 0.258 0.306 0.001
454 0.1833 (±0.0406/√100) 💬 google/gemma-1.1-2b-it 32.6 (±26.7) 0.171 0.376 0.003
455 0.1765 (±0.0439/√100) 💬 Qwen/Qwen1.5-0.5B-Chat 214.3 (±172.6) 0.251 0.276 0.002
456 0.1687 (±0.0172/√100) 🟢 upstage/SOLAR-10.7B-v1.0 171.0 (±87.1) 0.265 0.237 0.004
457 0.1544 (±0.0132/√100) 🟢 01-ai/Yi-1.5-34B-Chat 730.0 (±533.6) 0.201 0.256 0.006
458 0.1475 (±0.0826/√100) 💬 mosaicml/mpt-30b-chat 112.2 (±112.4) 0.182 0.254 0.007
459 0.1241 (±0.0558/√100) 💬 google/gemma-2b-it 24.1 (±24.6) 0.115 0.257 0.000
460 0.1226 (±0.0240/√100) 🟢 Deci/DeciLM-7B 174.0 (±165.5) 0.190 0.174 0.003
461 0.1160 (±0.0081/√100) 🟢 rinna/japanese-gpt-neox-3.6b-instruct... 212.1 (±148.9) 0.153 0.195 0.000
462 0.1009 (±0.0846/√100) 💬 meta-llama/Llama-2-7b-chat-hf 241.5 (±336.2) 0.136 0.158 0.009
463 0.1004 (±0.0094/√100) 🟢 rinna/japanese-gpt-neox-3.6b-instruct... 123.1 (±128.8) 0.119 0.182 0.000
464 0.0987 (±0.0145/√100) 🟢 deepseek-ai/deepseek-llm-67b-base 154.2 (±77.3) 0.174 0.121 0.000
465 0.0982 (±0.1596/√100) 💬 rinna/nekomata-14b-instruction 16.0 (±38.1) 0.115 0.141 0.039
466 0.0955 (±0.0102/√100) 🟢 rinna/japanese-gpt-neox-3.6b-instruct... 129.5 (±141.0) 0.116 0.170 0.000
467 0.0939 (±0.0064/√100) 🟢 sbintuitions/tiny-lm-chat 250.2 (±275.6) 0.133 0.149 0.000
468 0.0936 (±0.0082/√100) 💬 sbintuitions/tiny-lm-chat 276.7 (±209.6) 0.135 0.145 0.000
469 0.0921 (±0.0058/√100) 🟢 sbintuitions/tiny-lm 471.9 (±199.0) 0.135 0.142 0.000
470 0.0880 (±0.0334/√100) 🟢 rinna/bilingual-gpt-neox-4b-instructi... 134.0 (±144.7) 0.105 0.159 0.000
471 0.0762 (±0.0033/√100) 🟢 line-corporation/japanese-large-lm-3.6b 1066.6 (±31.6) 0.125 0.103 0.000
472 0.0760 (±0.0032/√100) 🟢 line-corporation/japanese-large-lm-3.... 1066.4 (±31.8) 0.125 0.103 0.000
473 0.0758 (±0.0034/√100) 💬 line-corporation/japanese-large-lm-3.... 1067.2 (±31.8) 0.125 0.102 0.000
474 0.0673 (±0.0085/√100) 🟢 moneyforward/houou-instruction-7b-v3 143.2 (±112.2) 0.098 0.104 0.000
475 0.0625 (±0.0169/√100) 🟢 llm-jp/llm-jp-13b-instruct-full-ac_00... 31.6 (±10.3) 0.088 0.099 0.000
476 0.0429 (±0.0440/√100) 🟢 rinna/bilingual-gpt-neox-4b-instructi... 31.7 (±54.7) 0.045 0.084 0.000
477 0.0406 (±0.0028/√100) 🟢 microsoft/Phi-3-small-128k-instruct 268.1 (±123.4) 0.083 0.039 0.000
478 0.0337 (±0.0026/√100) 🟢 augmxnt/shisa-7b-v1 590.7 (±238.2) 0.076 0.025 0.000
479 0.0284 (±0.0012/√100) 🟢 lightblue/karasu-7B-chat-plus 285.1 (±53.8) 0.080 0.005 0.000
480 0.0225 (±0.0702/√100) 💬 SakanaAI/EvoLLM-JP-A-v1-7B 5.9 (±27.6) 0.026 0.037 0.005
481 0.0180 (±0.0039/√100) 🟢 mistralai/Mistral-Nemo-Base-2407 607.5 (±344.5) 0.039 0.015 0.000
482 0.0047 (±0.0024/√100) 🟢 ai-forever/mGPT-13B 321.1 (±266.7) 0.008 0.006 0.000
483 0.0022 (±0.0006/√100) 🟢 lightblue/qarasu-14B-chat-plus-unleashed 937.5 (±557.0) 0.004 0.002 0.000
484 0.0019 (±0.0002/√100) 🟢 01-ai/Yi-1.5-9B-Chat 1440.0 (±51.9) 0.005 0.001 0.000
485 0.0018 (±0.0004/√100) 🟢 CohereForAI/aya-23-8B 1676.6 (±351.0) 0.004 0.002 0.000
486 0.0006 (±0.0002/√100) 🟢 meta-llama/Llama-2-13b-chat-hf 1523.9 (±43.5) 0.001 0.001 0.000
487 0.0000 (±0.0000/√100) 🟢 01-ai/Yi-1.5-6B 0.0 (±0.0) 0.000 0.000 0.000
488 0.0000 (±0.0000/√100) 🟢 lightblue/karasu-1.1B 0.0 (±0.0) 0.000 0.000 0.000
489 0.0000 (±0.0000/√100) 🟢 lightblue/karasu-7B-chat-plus-unleashed 0.0 (±0.0) 0.000 0.000 0.000
490 0.0000 (±0.0000/√100) 🟢 lightblue/karasu-7B-chat 0.0 (±0.0) 0.000 0.000 0.000
491 0.0000 (±0.0000/√100) 🟢 lightblue/suzume-llama-3-8B-japanese 300.0 (±0.0) 0.000 0.000 0.000
492 0.0000 (±0.0000/√100) 🟢 lightblue/suzume-llama-3-8B-multilingual 300.0 (±0.0) 0.000 0.000 0.000

FAQ

What is the difference between the modes?

pfgen-bench provides three types of templates: completion, qa, and chat.

  • completion: No instruction is provided. It consists solely of question-answer pairs.
  • qa: An instruction is included at the beginning of the user message.
  • chat: An instruction is placed in a system message.

Should we control the temperature?

pfgen-bench recommends setting the temperature to 1.0.

Some tasks (e.g., generating dice rolls) require a temperature of 1.0, and setting a lower temperature often leads to unnatural repetition.

Citation

If you use this repository, please cite the following paper:

@preprint{Imos2024-pre-pfgen,
  title={{pfgen-bench: 日本語事前学習モデルのための文章生成性能評価ベンチマーク}},
  author={今城, 健太郎 and 平野, 正徳 and 鈴木, 脩司 and 三上, 裕明},
  doi={10.51094/jxiv.1008},
  year={2024}
}
@preprint{Imos2024-judge-free,
  title={{A Judge-free LLM Open-ended Generation Benchmark Based on the Distributional Hypothesis}},
  author={Kentaro Imajo and Masanori Hirano and Shuji Suzuki and Hiroaki Mikami},
  year={2025},
  eprint={2502.09316},
  archivePrefix={arXiv},
  primaryClass={cs.CL},
  url={https://arxiv.org/abs/2502.09316},
  doi={10.48550/arXiv.2502.09316}
}

Or cite directory this repository:

@misc{imajo2024-pfgen
    title={{Preferred Generation Benchmark}},
    author={Kentaro Imajo and Masanori Hirano and Shuji Suzuki and Hiroaki Mikami},
    year={2024},
    url = {https://github.com/pfnet-research/pfgen-bench}
}