Skip to content

netrosec/PickAsoOOTDiffusion-train

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

OOTDiffusion

This repository is copy from the official implementation of OOTDiffusion

🤗 Try out OOTDiffusion (Thanks to ZeroGPU for providing A100 GPUs)

Or try our own demo on RTX 4090 GPUs

OOTDiffusion: Outfitting Fusion based Latent Diffusion for Controllable Virtual Try-on [arXiv paper]
Yuhao Xu, Tao Gu, Weifeng Chen, Chengcai Chen
Xiao-i Research

Our model checkpoints trained on VITON-HD (half-body) and Dress Code (full-body) have been released

demo  workflow 

Installation

  1. Clone the repository
git clone https://github.com/levihsu/OOTDiffusion
  1. Create a conda environment and install the required packages
conda create -n ootd python==3.10
conda activate ootd
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2
pip install -r requirements.txt

Inference

  1. Half-body model
cd OOTDiffusion/run
python run_ootd.py --model_path <model-image-path> --cloth_path <cloth-image-path> --scale 2.0 --sample 4
  1. Full-body model

Garment category must be paired: 0 = upperbody; 1 = lowerbody; 2 = dress

cd OOTDiffusion/run
python run_ootd.py --model_path <model-image-path> --cloth_path <cloth-image-path> --model_type dc --category 2 --scale 2.0 --sample 4

Train

accelerate launch ootd_train.py --load_height 512 --load_width 384 --dataset_list 'train_pairs.txt' --dataset_mode 'train' --batch_size 16 --train_batch_size 16 --num_train_epochs 200

Citation

@article{xu2024ootdiffusion,
  title={OOTDiffusion: Outfitting Fusion based Latent Diffusion for Controllable Virtual Try-on},
  author={Xu, Yuhao and Gu, Tao and Chen, Weifeng and Chen, Chengcai},
  journal={arXiv preprint arXiv:2403.01779},
  year={2024}
}

TODO List

  • Paper
  • Gradio demo
  • Inference code
  • Model weights
  • Training code
  • Distributed and Parallel Training code

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 91.6%
  • Cuda 5.0%
  • C++ 2.8%
  • Shell 0.5%
  • Dockerfile 0.1%
  • C 0.0%