Evolutionary algorithms from the papers
-
Natural Evolution Strategies Converge on Sphere Functions. GECCO '12. [paper, reference]
Tom Schaul.
-
Learning Rate Adaptation by Line Search in Evolution Strategies with Recombination. GECCO '22. [paper, appendix, reference]
Armand Gissler, Anne Auger, Nikolaus Hansen.
-
Analysis of Evolution Strategies with the Optimal Weighted Recombination. GECCO '18. [paper, reference]
Chun-kit Au, Ho-fung Leung.
-
Analysis of Information Geometric Optimization with Isotropic Gaussian Distribution Under Finite Samples. GECCO '18. [paper, reference]
Kento Uchida, Shinichi Shirakawa, Youhei Akimoto.
-
Reconsidering the Progress Rate Theory for Evolution Strategies in Finite Dimensions. GECCO '06. [paper, reference]
Anne Auger, Nikolaus Hansen.
-
Convergence Rates of Efficient Global Optimization Algorithms. JMLR vol. 12, 2011. [paper, reference]
Adam D. Bull.
-
Towards a Stronger Theory for Permutation-based Evolutionary Algorithms. GECCO '22. [paper, reference]
Benjamin Doerr, Yassine Ghannane, Marouane Ibn Brahim.
-
Convergence Rate of the (1+1)-Evolution Strategy with Success-Based Step-Size Adaptation on Convex Quadratic Functions. GECCO '21. [paper, reference]
Daiki Morinaga, Kazuto Fukuchi, Jun Sakuma, Youhei Akimoto.
-
Simple algorithms for optimization on Riemannian manifolds with constraints. Applied Mathematics & Optimization, vol. 82, 2020. [paper, reference]
Changshuo Liu, Nicolas Boumal.
-
Globally convergent evolution strategies. Mathematical Programming, vol. 152. [paper, reference]
Y. Diouane, S. Gratton, L. N. Vicente.
-
On Proving Linear Convergence of Comparison-based Step-size Adaptive Randomized Search on Scaling-Invariant Functions via Stability of Markov Chains. INRIA, 2013. [paper, reference]
Anne Auger, Nikolaus Hansen.
-
Convergence Analysis of Optimization Algorithms. arXiv. [paper, reference]
HyoungSeok Kim, JiHoon Kang, WooMyoung Park, SukHyun Ko, YoonHo Cho, DaeSung Yu, YoungSook Song and JungWon Choi.
-
Convergence Analysis. Lecture. [document]
-
Numerical Optimization. Class note. [document]
-
The Benefits and Limitations of Voting Mechanisms in Evolutionary Optimisation. FOGA '19. [paper, reference]
Jonathan E. Rowe, Aishwaryaprajna.
-
Convergence Analysis of Differential Evolution Variants on Unconstrained Global Optimization Functions. IJAIA, vol. 2, 2011. [paper, reference]
G.Jeyakumar, C.Shanmugavelayutham.
-
The Dynamics of Cumulative Step-Size Adaptation on the Ellipsoid Model. Evolutionary Computation, vol. 24, 2016. [paper, reference]
Hans-Georg Beyer, Michael Hellwig.
-
Global linear convergence of Evolution Strategies with recombination on scaling-invariant functions. Journal of Global Optimization, vol. 86, 2023. [paper, reference]
Cheikh Toure, Anne Auger, Nikolaus Hansen.
-
Log-linear Convergence of the Scale-invariant (µ/µw, λ)-ES and Optimal µ for Intermediate Recombination for Large Population Sizes. PPSN '10. [paper, reference]
Mohamed Jebalia, Anne Auger.
-
On a Population Sizing Model for Evolution Strategies Optimizing the Highly Multimodal Rastrigin Function. GECCO '23. [paper, reference]
Lisa Schönenberger, Hans-Georg Beyer.
-
Self-Adaptation of Multi-Recombinant Evolution Strategies on the Highly Multimodal Rastrigin Function. Evolutionary Compatation, 2024. [paper, reference]
Amir Omeradzic, Hans-Georg Beyer.
-
The Dynamics of Self-Adaptive Multi-Recombinant Evolution Strategies on the General Ellipsoid Model. Evolutionary Computation, vol. 18, 2014. [paper, reference]
Hans-Georg Beyer, Alexander Melkozerov.
-
Self-Adaptation in Evolution Strategies. Thesis. [document, reference]
Silja Meyer-Nieberg.
-
The Theory of Evolution Strategies. Book. [document, reference]
Hans-Georg Beyer.
-
Markov chain Analysis of Evolution Strategies. Thesis. [document, reference]
Alexandre Chotard.
-
Bias in Standard Self-Adaptive Evolution Strategies. CEC, 2024. [paper, reference]
Amir Omeradzic, Hans-Georg Beyer.
-
The CMA Evolution Strategy: A Tutorial. arXiv. [paper, reference]
Nikolaus Hansen.
-
Completely Derandomized Self-Adaptation in Evolution Strategies. Evolutionary Computation, vol. 9, 2001. [paper, reference]
Nikolaus Hansen, Andreas Ostermeier.
-
A Restart CMA Evolution Strategy With Increasing Population Size. CEC, 2005. [paper, reference]
Anne Auger, Nikolaus Hansen.
-
Deriving and Improving CMA-ES with Information Geometric Trust Regions. GECCO '17. [paper, reference]
Abbas Abdolmaleki, Bob Price, Nuno Lau, Luis Paulo Reis, Gerhard Neumann.
-
Theoretical Foundation for CMA-ES from Information Geometry Perspective. arXiv. [paper, reference]
Youhei Akimoto, Yuichi Nagata, Isao Ono, Shigenobu Kobayashi.
-
A Derandomized Approach to Self Adaptation of Evolution Strategies. Evolutionary Computation, vol. 2, 1994. [paper, reference]
Andreas Ostermeier, Andreas Gawelczyk, Nikolaus Hansen.
-
Simplify Your Covariance Matrix Adaptation Evolution Strategy. Evolutionary Computation, vol. 21, 2017. [paper, reference]
Hans-Georg Beyer, Bernhard Sendhoff.
-
Sample Reuse in the Covariance Matrix Adaptation Evolution Strategy Based on Importance Sampling. GECCO '15. [paper, reference]
Shinichi Shirakawa, Youhei Akimoto, Kazuki Ouchi, Kouzou Ohara.
-
CMA-ES with Learning Rate Adaptation: Can CMA-ES with Default Population Size Solve Multimodal and Noisy Problems?. GECCO '23. [paper, reference]
Masahiro Nomura, Youhei Akimoto, Isao Ono.
-
Natural Evolution Strategies. JMLR, vol. 15, 2014. [paper, reference]
Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, Jürgen Schmidhuber.
-
Exponential Natural Evolution Strategies. GECCO '10. [paper, reference]
Tobias Glasmachers, Tom Schaul, Sun Yi, Daan Wierstra, Jürgen Schmidhuber.
-
Efficient Natural Evolution Strategies. GECCO '09. [paper, reference]
Yi Sun, Daan Wierstra, Tom Schaul, Jürgen Schmidhuber.
-
Bidirectional Relation between CMA Evolution Strategies and Natural Evolution Strategies. PPSN '10. [paper, reference]
Youhei Akimoto, Yuichi Nagata, Isao Ono, Shigenobu Kobayashi.
-
High Dimensions and Heavy Tails for Natural Evolution Strategies. GECCO '11. [paper, reference]
Tom Schaul, Tobias Glasmachers, Jürgen Schmidhuber.
-
Modular Differential Evolution. GECCO '23. [paper, reference]
Diederick Vermetten, Fabio Caraffini, Anna V. Kononova, Thomas Bäck.
-
Geometric Differential Evolution. GECCO '09. [paper, reference]
Alberto Moraglio, Julian Togelius.
-
Success-History Based Parameter Adaptation for Differential Evolution. CEC, 2013. [paper, reference]
Ryoji Tanabe, Alex Fukunaga.
-
Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization. Evolutionary Computation, vol. 13, 2009. [paper, reference]
A. K. Qin, V. L. Huang, and P. N. Suganthan.
-
A Novel Similarity-based Mutant Vector Generation Strategy for Differential Evolution. GECCO '18. [paper, reference]
Eduardo Segredo, Eduardo Lalla-Ruiz, Emma Hart.
-
Differential Evolution with Composite Trial Vector Generation Strategies and Control Parameters. Evolutionary Computation, vol. 15, 2011. [paper, reference]
Yong Wang, Zixing Cai, Qingfu Zhang.
-
Why Natural Gradient?. ICASSP, 1998. [paper, reference]
S. Amari, S.C. Douglas.
-
Information Geometry of the Gaussian Distribution in View of Stochastic Optimization. FOGA '15. [paper, reference]
Luigi Malagò, Giovanni Pistone.
-
Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles. JMLR, vol. 18, 2017. [paper, reference]
Yann Ollivier, Ludovic Arnold, Anne Auger, Nikolaus Hansen.
-
Convergence Analysis of Evolutionary Algorithms That are Based on the Paradigm of Information Geometry. Evolutionary Computation, vol. 28, 2014. [paper, reference]
Hans-Georg Beyer.
-
Information Geometry and Its Applications. Lecture. [document]
S. Amari.
-
Information Geometry and Its Applications to Machine Learning. Lecture. [document]
S. Amari.
-
Information Geometry and Its Applications. Lecture. [document]
S. Amari.