Skip to content

nAuTahn/EAs-from-the-papers

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EAs-from-the-papers

Evolutionary algorithms from the papers

1. Analysis & Convergence Analysis
2. Classical Evolution Strategies
3. CMA-ES & Its Variants
4. Natural Evolution Strategies
5. Differential Evolution & Its Variants
6. Information Geometry & Information Geometric Optimization

Analysis & Convergence Analysis

  1. Natural Evolution Strategies Converge on Sphere Functions. GECCO '12. [paper, reference]

    Tom Schaul.

  2. Learning Rate Adaptation by Line Search in Evolution Strategies with Recombination. GECCO '22. [paper, appendix, reference]

    Armand Gissler, Anne Auger, Nikolaus Hansen.

  3. Analysis of Evolution Strategies with the Optimal Weighted Recombination. GECCO '18. [paper, reference]

    Chun-kit Au, Ho-fung Leung.

  4. Analysis of Information Geometric Optimization with Isotropic Gaussian Distribution Under Finite Samples. GECCO '18. [paper, reference]

    Kento Uchida, Shinichi Shirakawa, Youhei Akimoto.

  5. Reconsidering the Progress Rate Theory for Evolution Strategies in Finite Dimensions. GECCO '06. [paper, reference]

    Anne Auger, Nikolaus Hansen.

  6. Convergence Rates of Efficient Global Optimization Algorithms. JMLR vol. 12, 2011. [paper, reference]

    Adam D. Bull.

  7. Towards a Stronger Theory for Permutation-based Evolutionary Algorithms. GECCO '22. [paper, reference]

    Benjamin Doerr, Yassine Ghannane, Marouane Ibn Brahim.

  8. Convergence Rate of the (1+1)-Evolution Strategy with Success-Based Step-Size Adaptation on Convex Quadratic Functions. GECCO '21. [paper, reference]

    Daiki Morinaga, Kazuto Fukuchi, Jun Sakuma, Youhei Akimoto.

  9. Simple algorithms for optimization on Riemannian manifolds with constraints. Applied Mathematics & Optimization, vol. 82, 2020. [paper, reference]

    Changshuo Liu, Nicolas Boumal.

  10. Globally convergent evolution strategies. Mathematical Programming, vol. 152. [paper, reference]

    Y. Diouane, S. Gratton, L. N. Vicente.

  11. On Proving Linear Convergence of Comparison-based Step-size Adaptive Randomized Search on Scaling-Invariant Functions via Stability of Markov Chains. INRIA, 2013. [paper, reference]

    Anne Auger, Nikolaus Hansen.

  12. Convergence Analysis of Optimization Algorithms. arXiv. [paper, reference]

    HyoungSeok Kim, JiHoon Kang, WooMyoung Park, SukHyun Ko, YoonHo Cho, DaeSung Yu, YoungSook Song and JungWon Choi.

  13. Convergence Analysis. Lecture. [document]

  14. Numerical Optimization. Class note. [document]

  15. The Benefits and Limitations of Voting Mechanisms in Evolutionary Optimisation. FOGA '19. [paper, reference]

    Jonathan E. Rowe, Aishwaryaprajna.

  16. Convergence Analysis of Differential Evolution Variants on Unconstrained Global Optimization Functions. IJAIA, vol. 2, 2011. [paper, reference]

    G.Jeyakumar, C.Shanmugavelayutham.

Classical Evolution Strategies

  1. The Dynamics of Cumulative Step-Size Adaptation on the Ellipsoid Model. Evolutionary Computation, vol. 24, 2016. [paper, reference]

    Hans-Georg Beyer, Michael Hellwig.

  2. Global linear convergence of Evolution Strategies with recombination on scaling-invariant functions. Journal of Global Optimization, vol. 86, 2023. [paper, reference]

    Cheikh Toure, Anne Auger, Nikolaus Hansen.

  3. Log-linear Convergence of the Scale-invariant (µ/µw, λ)-ES and Optimal µ for Intermediate Recombination for Large Population Sizes. PPSN '10. [paper, reference]

    Mohamed Jebalia, Anne Auger.

  4. On a Population Sizing Model for Evolution Strategies Optimizing the Highly Multimodal Rastrigin Function. GECCO '23. [paper, reference]

    Lisa Schönenberger, Hans-Georg Beyer.

  5. Self-Adaptation of Multi-Recombinant Evolution Strategies on the Highly Multimodal Rastrigin Function. Evolutionary Compatation, 2024. [paper, reference]

    Amir Omeradzic, Hans-Georg Beyer.

  6. The Dynamics of Self-Adaptive Multi-Recombinant Evolution Strategies on the General Ellipsoid Model. Evolutionary Computation, vol. 18, 2014. [paper, reference]

    Hans-Georg Beyer, Alexander Melkozerov.

  7. Self-Adaptation in Evolution Strategies. Thesis. [document, reference]

    Silja Meyer-Nieberg.

  8. The Theory of Evolution Strategies. Book. [document, reference]

    Hans-Georg Beyer.

  9. Markov chain Analysis of Evolution Strategies. Thesis. [document, reference]

    Alexandre Chotard.

  10. Bias in Standard Self-Adaptive Evolution Strategies. CEC, 2024. [paper, reference]

    Amir Omeradzic, Hans-Georg Beyer.

CMA-ES & Its Variants

  1. The CMA Evolution Strategy: A Tutorial. arXiv. [paper, reference]

    Nikolaus Hansen.

  2. Completely Derandomized Self-Adaptation in Evolution Strategies. Evolutionary Computation, vol. 9, 2001. [paper, reference]

    Nikolaus Hansen, Andreas Ostermeier.

  3. A Restart CMA Evolution Strategy With Increasing Population Size. CEC, 2005. [paper, reference]

    Anne Auger, Nikolaus Hansen.

  4. Deriving and Improving CMA-ES with Information Geometric Trust Regions. GECCO '17. [paper, reference]

    Abbas Abdolmaleki, Bob Price, Nuno Lau, Luis Paulo Reis, Gerhard Neumann.

  5. Theoretical Foundation for CMA-ES from Information Geometry Perspective. arXiv. [paper, reference]

    Youhei Akimoto, Yuichi Nagata, Isao Ono, Shigenobu Kobayashi.

  6. A Derandomized Approach to Self Adaptation of Evolution Strategies. Evolutionary Computation, vol. 2, 1994. [paper, reference]

    Andreas Ostermeier, Andreas Gawelczyk, Nikolaus Hansen.

  7. Simplify Your Covariance Matrix Adaptation Evolution Strategy. Evolutionary Computation, vol. 21, 2017. [paper, reference]

    Hans-Georg Beyer, Bernhard Sendhoff.

  8. Sample Reuse in the Covariance Matrix Adaptation Evolution Strategy Based on Importance Sampling. GECCO '15. [paper, reference]

    Shinichi Shirakawa, Youhei Akimoto, Kazuki Ouchi, Kouzou Ohara.

  9. CMA-ES with Learning Rate Adaptation: Can CMA-ES with Default Population Size Solve Multimodal and Noisy Problems?. GECCO '23. [paper, reference]

    Masahiro Nomura, Youhei Akimoto, Isao Ono.

Natural Evolution Strategies

  1. Natural Evolution Strategies. JMLR, vol. 15, 2014. [paper, reference]

    Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, Jürgen Schmidhuber.

  2. Exponential Natural Evolution Strategies. GECCO '10. [paper, reference]

    Tobias Glasmachers, Tom Schaul, Sun Yi, Daan Wierstra, Jürgen Schmidhuber.

  3. Efficient Natural Evolution Strategies. GECCO '09. [paper, reference]

    Yi Sun, Daan Wierstra, Tom Schaul, Jürgen Schmidhuber.

  4. Bidirectional Relation between CMA Evolution Strategies and Natural Evolution Strategies. PPSN '10. [paper, reference]

    Youhei Akimoto, Yuichi Nagata, Isao Ono, Shigenobu Kobayashi.

  5. High Dimensions and Heavy Tails for Natural Evolution Strategies. GECCO '11. [paper, reference]

    Tom Schaul, Tobias Glasmachers, Jürgen Schmidhuber.

Differential Evolution & Its Variants

  1. Modular Differential Evolution. GECCO '23. [paper, reference]

    Diederick Vermetten, Fabio Caraffini, Anna V. Kononova, Thomas Bäck.

  2. Geometric Differential Evolution. GECCO '09. [paper, reference]

    Alberto Moraglio, Julian Togelius.

  3. Success-History Based Parameter Adaptation for Differential Evolution. CEC, 2013. [paper, reference]

    Ryoji Tanabe, Alex Fukunaga.

  4. Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization. Evolutionary Computation, vol. 13, 2009. [paper, reference]

    A. K. Qin, V. L. Huang, and P. N. Suganthan.

  5. A Novel Similarity-based Mutant Vector Generation Strategy for Differential Evolution. GECCO '18. [paper, reference]

    Eduardo Segredo, Eduardo Lalla-Ruiz, Emma Hart.

  6. Differential Evolution with Composite Trial Vector Generation Strategies and Control Parameters. Evolutionary Computation, vol. 15, 2011. [paper, reference]

    Yong Wang, Zixing Cai, Qingfu Zhang.

Information Geometry & Information Geometric Optimization

  1. Why Natural Gradient?. ICASSP, 1998. [paper, reference]

    S. Amari, S.C. Douglas.

  2. Information Geometry of the Gaussian Distribution in View of Stochastic Optimization. FOGA '15. [paper, reference]

    Luigi Malagò, Giovanni Pistone.

  3. Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles. JMLR, vol. 18, 2017. [paper, reference]

    Yann Ollivier, Ludovic Arnold, Anne Auger, Nikolaus Hansen.

  4. Convergence Analysis of Evolutionary Algorithms That are Based on the Paradigm of Information Geometry. Evolutionary Computation, vol. 28, 2014. [paper, reference]

    Hans-Georg Beyer.

  5. Information Geometry and Its Applications. Lecture. [document]

    S. Amari.

  6. Information Geometry and Its Applications to Machine Learning. Lecture. [document]

    S. Amari.

  7. Information Geometry and Its Applications. Lecture. [document]

    S. Amari.