This project provides a modular YAML based portfolio analytics calculation engine. This engine allows to plug in YAML configurations to compute various portfolio related analytics. Engine adheres to YAML schema and is utilising Polars or Python instructions. This project also hosts a dash app that relies on a local LLM model to create schema compliant YAML files. These YAML files are consumed and interpreted by the calculation engine provided.
The analytics calculation engine is designed to process data based on instructions provided in YAML configuration files. It leverages Polars for data manipulation and supports Sphinx for documentation generation.
graph TD
A[User] -->|Interacts with| B[Dash Web UI]
B -->|Sends JSON data| C[Backend Service]
C -->|Fetches data from| G[Data Service]
G -->|Fetches data from| D[SQL Server]
C -->|Processes YAML files with| E[Calculation Engine]
E -->|Uses| F[Polars]
E -->|Uses| I[YAML Files]
C -->|Interacts with| H[GPT App]
H -->|Generates| I[YAML Files]
C -->|Returns results to| B
B -->|Displays results to| A
- Modular design with separation of data, configuration, and computation.
- Dynamic analytics calculations via YAML configurations.
- Regression testing capabilities with YAML support.
- Sphinx documentation for the codebase.
- SQL Server database (e.g., SQL Server Docker container) to simulate database access. One can use docker image, e.g. https://github.com/chriseaton/docker-adventureworks, https://hub.docker.com/r/chriseaton/adventureworks
- Python 3.11 or higher.
- For GPT app to work, local installation of ollama with some LLM models is needed. See https://ollama.com
- Packages listed in
requirements.txt
.
-
Clone the Repository
git clone https://github.com/maxicusj/polarparrot.git cd polarparrot
-
Install Dependencies
pip install -r requirements.txt
-
Create Environment Configuration (.env)
Create a.env
file in the root directory with the following content:DB_SERVER=localhost DB_DATABASE=AdventureWorks DB_USERNAME=sa DB_PASSWORD=password
-
Start Backend Services, Web UI and GPT Assistant
Start the services with the provided script:./start_services.sh
Run the selected YAML metrics against mockup test data:
python metrics_runner.py analytics_list.json
Run regression on YAML metrics against mockup test data in data.py:
python tests/regression_runner.py
Run the selected YAML metrics against mockup test data:
python tests/unit_tests_runner.py
You can test the backend service with a sample request:
curl -X POST http://localhost:8088/analytics \
-H "Content-Type: application/json" \
-d '{
"positions_json": "[{\"instrument_id\": 1, \"weight_1\": 0.00005, \"weight_2\": 0.00004, \"weight_3\": 0.00003, \"weight_4\": 0.00005, \"is_laggard\": true}, {\"instrument_id\": 2, \"weight_1\": 0.00007, \"weight_2\": 0.00006, \"weight_3\": 0.00007, \"weight_4\": 0.00006, \"is_laggard\": false}, {\"instrument_id\": 3, \"weight_1\": 0.0001, \"weight_2\": 0.00008, \"weight_3\": 0.00002, \"weight_4\": 0.0001, \"is_laggard\": true}, {\"instrument_id\": 4, \"weight_1\": 0.00002, \"weight_2\": 0.00005, \"weight_3\": 0.00009, \"weight_4\": 0.00002, \"is_laggard\": true}, {\"instrument_id\": 5, \"weight_1\": 0.00009, \"weight_2\": 0.00007, \"weight_3\": 0.00005, \"weight_4\": 0.00007, \"is_laggard\": false}]",
"analytics_list_json": "{\"analytics\": [\"yaml/0002.yaml\", \"yaml/0004.yaml\"]}"
}'
http://localhost:8050
http://localhost:8080
-
metrics_runner.py
: Executes analytics calculations as per YAML configurations. -
regression_runner.py
: Validates metrics using regression tests. -
unit_tests_runner.py
: Validates metrics using regression tests. -
start_services.sh
: Starts backend services and the web UI. -
requirements.txt
: Lists required Python packages. -
.env
: Environment variables for database connection. -
calculation_engine.py
: The actual analytics engine. -
backend_service.py
: Backend service. -
data_service.py
: Data service, providing interface to the SQL database. -
app.py
: Web UI for running analytics against provided YAML config and portfolio positions. -
gpt/gpt_service.py
: Web UI for generating YAMLs with the help of an LLM. -
data/data.sql
: Sample SQL table and data population script for instrument_categorization table. Used by analytics engine.
You can customize this engine by:
- Adding new YAML files to the
yaml/
directory to define analytics configurations. - Generating new YAML files by talking to a locally available LLM model(http://localhost:8080) and placing the genrated files to the
yaml/
directory to be interrpreted by the engine. - Extending the Polars DataFrame manipulation logic in the
calculaton_engine.py
file.
This project is licensed under MIT License.