Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

"Nadam" and "AMSGrad" are implemented. #450

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
117 changes: 117 additions & 0 deletions src/train.jl
Original file line number Diff line number Diff line change
Expand Up @@ -183,6 +183,123 @@ function apply_gradients(optimizer::AdamOptimizer, grads_and_vars; global_step=n
return group(ops...)
end

mutable struct NadamOptimizer <: Optimizer
η::Float64
β1::Float64
β2::Float64
ϵ::Float64
name::String
end

NadamOptimizer(learning_rate; β1=.9, β2=.999, ϵ=1e-8, name="nadam") = NadamOptimizer(learning_rate, β1, β2, ϵ, name)

function NadamOptimizer(; η=.001, kwargs...)
NadamOptimizer(η; kwargs...)
end

function Base.show(io::IO, optim::NadamOptimizer)
print(io, "NadamOptimizer(η=$(optim.η), β1=$(optim.β1), β2=$(optim.β2), ϵ=$(optim.ϵ))")
end

function apply_gradients(optimizer::NadamOptimizer, grads_and_vars; global_step=nothing, name="nadam")
ops = Tensor[]
@advance_step
for (grad, var) in grads_and_vars
local m, v, T
variable_scope(name) do
variable_scope(node_name(var)[1]) do
m = get_variable("m", get_shape(var), eltype(var), initializer=ConstantInitializer(0.0), trainable=false)
v = get_variable("v", get_shape(var), eltype(var), initializer=ConstantInitializer(0.0), trainable=false)
T = get_variable("t", [], Float32, initializer=ConstantInitializer(1.0), trainable=false)
end
end
β1 = eltype(var)(optimizer.β1)
β2 = eltype(var)(optimizer.β2)
ϵ = eltype(var)(optimizer.ϵ)
η = eltype(var)(optimizer.η)
t = convert(Tensor{eltype(var)}, T)
push!(ops, tf.assign(T, T+1))
lr = η*sqrt(1-β2^t)/(1-β1^t)
if isa(grad, tf.IndexedSlices)
m_slice = tf.gather(m, grad.indices)
v_slice = tf.gather(v, grad.indices)
m_new = β1 .* m_slice + (1-β1) .* grad.values
v_new = (1-β2) .* (grad.values .^ 2)
push!(ops, tf.scatter_sub(var.var_node, grad.indices, lr/(sqrt(v_new)+ϵ) .* (β1 .* m_new + (1-β1) .* grad.values)))
push!(ops, tf.scatter_update(m.var_node, grad.indices, m_new))
push!(ops, tf.scatter_update(v.var_node, grad.indices, v_new))
else
m_new = β1 .* m + (1-β1).*grad
v_new = β2 .* v + (1-β2).*(grad.*grad)
push!(ops, tf.assign_sub(var, lr/(sqrt(v_new)+ϵ) .* (β1 .* m_new + (1-β1) .* grad.values)))
push!(ops, tf.assign(m, m_new))
push!(ops, tf.assign(v, v_new))
end
end
return group(ops...)
end

mutable struct AMSGradOptimizer <: Optimizer
η::Float64
β1::Float64
β2::Float64
ϵ::Float64
name::String
end

AMSGradOptimizer(learning_rate; β1=.9, β2=.999, ϵ=1e-8, name="AMSGrad") = AMSGradOptimizer(learning_rate, β1, β2, ϵ, name)

function AMSGradOptimizer(; η=.001, kwargs...)
AMSGradOptimizer(η; kwargs...)
end

function Base.show(io::IO, optim::AMSGradOptimizer)
print(io, "AMSGradOptimizer(η=$(optim.η), β1=$(optim.β1), β2=$(optim.β2), ϵ=$(optim.ϵ))")
end

function apply_gradients(optimizer::AMSGradOptimizer, grads_and_vars; global_step=nothing, name="AMSGrad")
ops = Tensor[]
@advance_step
for (grad, var) in grads_and_vars
local m, v, T
variable_scope(name) do
variable_scope(node_name(var)[1]) do
m = get_variable("m", get_shape(var), eltype(var), initializer=ConstantInitializer(0.0), trainable=false)
v = get_variable("v", get_shape(var), eltype(var), initializer=ConstantInitializer(0.0), trainable=false)
v_hat = get_variable("v_hat", get_shape(var), eltype(var), initializer=ConstantInitializer(0.0), trainable=false)
T = get_variable("t", [], Float32, initializer=ConstantInitializer(1.0), trainable=false)
end
end
β1 = eltype(var)(optimizer.β1)
β2 = eltype(var)(optimizer.β2)
ϵ = eltype(var)(optimizer.ϵ)
η = eltype(var)(optimizer.η)
t = convert(Tensor{eltype(var)}, T)
push!(ops, tf.assign(T, T+1))
if isa(grad, tf.IndexedSlices)
m_slice = tf.gather(m, grad.indices)
v_slice = tf.gather(v, grad.indices)
m_new = β1 .* m_slice + (1-β1) .* grad.values
v_new = β2 .* v_slice + (1-β2) .* (grad.values .^ 2)
v_hat = max(v_hat, v_new)
push!(ops, tf.scatter_sub(var.var_node, grad.indices, η/(sqrt(v_hat)+ϵ) .* m_new))
push!(ops, tf.scatter_update(m.var_node, grad.indices, m_new))
push!(ops, tf.scatter_update(v.var_node, grad.indices, v_new))
push!(ops, tf.scatter_update(v_hat.var_node, grad.indices, v_hat))
else
m_new = β1 .* m + (1-β1).*grad
v_new = β2 .* v + (1-β2).*(grad.*grad)
v_hat = max(v_hat, v_new)
push!(ops, tf.assign_sub(var, η/(sqrt(v_hat)+ϵ) .* m_new))
push!(ops, tf.assign(m, m_new))
push!(ops, tf.assign(v, v_new))
push!(ops, tf.assign(v_hat, v_hat))
end
end
return group(ops...)
end


mutable struct Saver
var_list
max_to_keep
Expand Down