-
Bayesian deep learning methods
- MC-Dropout
- SWAG
- DPN
- JEM
-
Datasets
Train/In Distribution Test/Out Distribution CIFAR10 {CIFAR100, SVHN, LSUN} FashionMNIST {CIFAR100, CIFAR10, LSUN} CIFAR100 {CIFAR10, SVHN, LSUN} SVHN {CIFAR100, CIFAR10, LSUN} -
Pretrained Models
Pretrained WideResNet28x10 on CIFAR10 DNN MC-Dropout SWAG DPN JEM -
Code Attribution
-
Cite
@inproceedings{mitros2020,
author = {Mitros, John and Pakrashi, Arjun and
Mac Namee, Brian},
pages = {71-87},
series = {European Conference on Computer Vision},
title = {Ramifications of Approximate Posterior Inference for
Bayesian Deep Learning in Adversarial and
Out-of-Distribution Settings},
year = {2020},
publisher = {Springer},
doi = {10.1007/978-3-030-66415-2_5},
isbn = {978-3-030-66414-5},
}