Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CI][Benchmark] Merge "add UMF benchmarks for fragmentation measurements" into sycl #17729

Merged
merged 2 commits into from
Apr 1, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
229 changes: 113 additions & 116 deletions devops/scripts/benchmarks/benches/umf.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
import os
import csv
import io
import re


def isUMFAvailable():
Expand Down Expand Up @@ -45,90 +46,36 @@ def benchmarks(self) -> list[Benchmark]:
return benches


class ComputeUMFBenchmark(Benchmark):
def __init__(self, bench, name):
class GBench(Benchmark):
def __init__(self, bench):
super().__init__(bench.directory, bench)

self.bench = bench
self.bench_name = name
self.bench_name = "umf-benchmark"
self.oneapi = get_oneapi()
self.umf_lib = options.umf + "lib"

self.col_name = None
self.col_iterations = None
self.col_real_time = None
self.col_cpu_time = None
self.col_time_unit = None

self.col_statistics_time = None
self.fragmentation_prefix = "FRAGMENTATION_"

def bin_args(self) -> list[str]:
return []
self.num_cols_with_memory = 13

def extra_env_vars(self) -> dict:
return {}

def setup(self):
if not isUMFAvailable():
print("UMF prefix path not provided")
return

self.benchmark_bin = os.path.join(options.umf, "benchmark", self.bench_name)

def get_tags(self):
return ["UMF", "allocation", "latency", "micro"]

def run(self, env_vars) -> list[Result]:
command = [
f"{self.benchmark_bin}",
]

command += self.bin_args()
env_vars.update(self.extra_env_vars())

result = self.run_bench(
command, env_vars, add_sycl=False, ld_library=[self.oneapi.tbb_lib()]
)
parsed = self.parse_output(result)
results = []
for r in parsed:
(config, pool, mean) = r
label = f"{config} {pool}"
results.append(
Result(
label=label,
value=mean,
command=command,
env=env_vars,
stdout=result,
unit="ns",
explicit_group=config,
)
)
return results

# Implementation with self.col_* indices could lead to the division by None
def get_mean(self, datarow):
raise NotImplementedError()

def teardown(self):
return


class GBench(ComputeUMFBenchmark):
def __init__(self, bench):
super().__init__(bench, "umf-benchmark")

self.col_name = 0
self.col_iterations = 1
self.col_real_time = 2
self.col_cpu_time = 3
self.col_time_unit = 4
self.col_name = "name"
self.col_iterations = "iterations"
self.col_real_time = "real_time"
self.col_cpu_time = "cpu_time"
self.col_time_unit = "time_unit"
self.col_memory_overhead = "memory_overhead"

self.idx_pool = 0
self.idx_config = 1
self.name_separator = "/"

self.col_statistics_time = self.col_real_time
self.col_statistics_memory = self.col_memory_overhead

self.is_preloaded = False

self.lib_to_be_replaced = None

def name(self):
return self.bench_name
Expand All @@ -139,89 +86,139 @@ def name(self):
def bin_args(self):
return ["--benchmark_format=csv"]

# the default unit
# might be changed globally with --benchmark_time_unit={ns|us|ms|s}
# the change affects only benchmark where time unit has not been set
# explicitly
def unit(self):
return "ns"

# these benchmarks are not stable, so set this at a large value
def stddev_threshold(self) -> float:
return 0.2 # 20%

def extra_env_vars(self) -> dict:
return {}

def setup(self):
if not isUMFAvailable():
print("UMF prefix path not provided")
return

self.benchmark_bin = os.path.join(options.umf, "benchmark", self.bench_name)

def is_memory_statistics_included(self, data_row):
return len(data_row) == self.num_cols_with_memory

def get_pool_and_config(self, full_name):
list_split = full_name.split(self.name_separator, 1)
if len(list_split) != 2:
raise ValueError("Incorrect benchmark name format: ", full_name)

return list_split[self.idx_pool], list_split[self.idx_config]

def get_mean(self, datarow):
def get_mean_time(self, datarow):
return float(datarow[self.col_statistics_time])

def parse_output(self, output):
csv_file = io.StringIO(output)
reader = csv.reader(csv_file)
def get_memory_overhead(self, datarow):
return float(datarow[self.col_statistics_memory])

data_row = next(reader, None)
if data_row is None:
raise ValueError("Benchmark output does not contain data.")
def get_unit_time_or_overhead(self, config):
if re.search(f"^{self.fragmentation_prefix}", config):
return "%"

results = []
for row in reader:
try:
full_name = row[self.col_name]
pool, config = self.get_pool_and_config(full_name)
mean = self.get_mean(row)
results.append((config, pool, mean))
except KeyError as e:
raise ValueError(f"Error parsing output: {e}")
# the default time unit
# might be changed globally with --benchmark_time_unit={ns|us|ms|s}
# the change affects only benchmark where time unit has not been set
# explicitly
return "ns"

return results
def get_names_of_benchmarks_to_be_run(self, command, env_vars):
list_all_command = command + ["--benchmark_list_tests"]

if self.is_preloaded:
list_all_command += ["--benchmark_filter=" + self.lib_to_be_replaced]

class GBenchPreloaded(GBench):
def __init__(self, bench, lib_to_be_replaced, replacing_lib):
super().__init__(bench)
all_names = self.run_bench(
list_all_command, env_vars, add_sycl=False, ld_library=[self.umf_lib]
).splitlines()

self.lib_to_be_replaced = lib_to_be_replaced
self.replacing_lib = replacing_lib
return all_names

def bin_args(self):
full_args = super().bin_args()
full_args.append(f"--benchmark_filter={self.lib_to_be_replaced}")
def run(self, env_vars) -> list[Result]:
command = [f"{self.benchmark_bin}"]

return full_args
all_names = self.get_names_of_benchmarks_to_be_run(command, env_vars)

def get_preloaded_name(self, pool_name) -> str:
new_pool_name = pool_name.replace(self.lib_to_be_replaced, self.replacing_lib)
command += self.bin_args()
env_vars.update(self.extra_env_vars())

return new_pool_name
results = []

for name in all_names:
specific_benchmark = command + ["--benchmark_filter=^" + name + "$"]

result = self.run_bench(
specific_benchmark, env_vars, add_sycl=False, ld_library=[self.umf_lib]
)

parsed = self.parse_output(result)
for r in parsed:
(explicit_group, pool, value) = r
label = f"{explicit_group} {pool}"
results.append(
Result(
label=label,
value=value,
command=command,
env=env_vars,
stdout=result,
unit=self.get_unit_time_or_overhead(explicit_group),
explicit_group=explicit_group,
)
)

return results

def parse_output(self, output):
csv_file = io.StringIO(output)
reader = csv.reader(csv_file)

data_row = next(reader, None)
if data_row is None:
raise ValueError("Benchmark output does not contain data.")
reader = csv.DictReader(csv_file)

results = []

for row in reader:
try:
full_name = row[self.col_name]
pool, config = self.get_pool_and_config(full_name)
mean = self.get_mean(row)
updated_pool = self.get_preloaded_name(pool)
updated_config = self.get_preloaded_name(config)
statistics_time = self.get_mean_time(row)

if self.is_preloaded:
pool = self.get_preloaded_pool_name(pool)

results.append((config, pool, statistics_time))

if self.is_memory_statistics_included(row):
statistics_overhead = self.get_memory_overhead(row)
config = self.fragmentation_prefix + config

results.append((config, pool, statistics_overhead))

results.append((updated_config, updated_pool, mean))
except KeyError as e:
raise ValueError(f"Error parsing output: {e}")

return results

def teardown(self):
return


class GBenchPreloaded(GBench):
def __init__(self, bench, lib_to_be_replaced, replacing_lib):
super().__init__(bench)

self.is_preloaded = True

self.lib_to_be_replaced = lib_to_be_replaced
self.replacing_lib = replacing_lib

def get_preloaded_pool_name(self, pool_name) -> str:
new_pool_name = pool_name.replace(self.lib_to_be_replaced, self.replacing_lib)

return new_pool_name


class GBenchGlibc(GBenchPreloaded):
def __init__(self, bench, replacing_lib):
Expand Down
Loading