Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix tensor dtype mismatch #36985

Merged
merged 3 commits into from
Mar 26, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 7 additions & 4 deletions tests/models/mixtral/test_modeling_mixtral.py
Original file line number Diff line number Diff line change
Expand Up @@ -486,7 +486,7 @@ def test_small_model_logits(self):
# Note: Key 9 is currently set for MI300, but may need potential future adjustments for H100s,
# considering differences in hardware processing and potential deviations in output.
EXPECTED_LOGITS = {
7: torch.Tensor([[0.1670, 0.1620, 0.6094], [-0.8906, -0.1588, -0.6060], [0.1572, 0.1290, 0.7246]]).to(
7: torch.Tensor([[0.1640, 0.1621, 0.6093], [-0.8906, -0.1640, -0.6093], [0.1562, 0.1250, 0.7226]]).to(
torch_device
),
8: torch.Tensor([[0.1631, 0.1621, 0.6094], [-0.8906, -0.1621, -0.6094], [0.1572, 0.1270, 0.7227]]).to(
Expand All @@ -499,6 +499,8 @@ def test_small_model_logits(self):
with torch.no_grad():
logits = model(dummy_input).logits

logits = logits.float()

torch.testing.assert_close(
logits[0, :3, :3], EXPECTED_LOGITS[self.cuda_compute_capability_major_version], atol=1e-3, rtol=1e-3
)
Expand All @@ -525,7 +527,7 @@ def test_small_model_logits_batched(self):
# considering differences in hardware processing and potential deviations in generated text.
EXPECTED_LOGITS_LEFT = {
7: torch.Tensor(
[[0.1750, 0.0537, 0.7007], [0.1750, 0.0537, 0.7007], [0.1750, 0.0537, 0.7007]],
[[0.1904, 0.0500, 0.7187], [0.1933, 0.0515, 0.7187], [0.2001, 0.0559, 0.7148]],
).to(torch_device),
8: torch.Tensor([[0.1914, 0.0508, 0.7188], [0.1953, 0.0510, 0.7227], [0.1973, 0.0562, 0.7148]]).to(
torch_device
Expand All @@ -537,7 +539,7 @@ def test_small_model_logits_batched(self):

EXPECTED_LOGITS_LEFT_UNPADDED = {
7: torch.Tensor(
[[0.2212, 0.5200, -0.3816], [0.8213, -0.2313, 0.6069], [0.2664, -0.7090, 0.2468]],
[[0.2236, 0.5195, -0.3828], [0.8203, -0.2275, 0.6054], [0.2656, -0.7070, 0.2460]],
).to(torch_device),
8: torch.Tensor([[0.2217, 0.5195, -0.3828], [0.8203, -0.2295, 0.6055], [0.2676, -0.7109, 0.2461]]).to(
torch_device
Expand All @@ -548,7 +550,7 @@ def test_small_model_logits_batched(self):
}

EXPECTED_LOGITS_RIGHT_UNPADDED = {
7: torch.Tensor([[0.2205, 0.1232, -0.1611], [-0.3484, 0.3030, -1.0312], [0.0742, 0.7930, 0.7969]]).to(
7: torch.Tensor([[0.2167, 0.1269, -0.1640], [-0.3496, 0.2988, -1.0312], [0.0688, 0.7929, 0.8007]]).to(
torch_device
),
8: torch.Tensor([[0.2178, 0.1260, -0.1621], [-0.3496, 0.2988, -1.0312], [0.0693, 0.7930, 0.8008]]).to(
Expand All @@ -561,6 +563,7 @@ def test_small_model_logits_batched(self):

with torch.no_grad():
logits = model(dummy_input, attention_mask=attention_mask).logits
logits = logits.float()

torch.testing.assert_close(
logits[0, :3, :3], EXPECTED_LOGITS_LEFT[self.cuda_compute_capability_major_version], atol=1e-3, rtol=1e-3
Expand Down