Skip to content

Commit

Permalink
Add PaliGemma. (#2519)
Browse files Browse the repository at this point in the history
* Add PaliGemma.

* PaliGemma inference loop.

* Running PaliGemma example.

* Tweak the prompt.
  • Loading branch information
LaurentMazare authored Sep 29, 2024
1 parent 0ebb388 commit 2f49e1b
Show file tree
Hide file tree
Showing 5 changed files with 434 additions and 0 deletions.
28 changes: 28 additions & 0 deletions candle-examples/examples/paligemma/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
# PaliGemma

[HuggingFace Model Card](https://huggingface.co/google/paligemma-3b-pt-224) -
[Model Page](https://ai.google.dev/gemma/docs/paligemma)

```bash
cargo run --features cuda --release --example paligemma -- \
--prompt "caption fr" --image candle-examples/examples/yolo-v8/assets/bike.jpg
```

```
loaded image with shape Tensor[dims 1, 3, 224, 224; bf16, cuda:0]
loaded the model in 1.267744448s
caption fr. Un groupe de cyclistes qui sont dans la rue.
13 tokens generated (56.52 token/s)
```

```bash
cargo run --features cuda --release --example paligemma -- \
--prompt "caption fr" --image candle-examples/examples/flux/assets/flux-robot.jpg
```

```
loaded image with shape Tensor[dims 1, 3, 224, 224; bf16, cuda:0]
loaded the model in 1.271492621s
caption fr une image d' un robot sur la plage avec le mot rouillé
15 tokens generated (62.78 token/s)
```
276 changes: 276 additions & 0 deletions candle-examples/examples/paligemma/main.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,276 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;

#[cfg(feature = "accelerate")]
extern crate accelerate_src;

use anyhow::{Error as E, Result};
use clap::Parser;

use candle_transformers::models::paligemma::{Config, Model};

use candle::{DType, Device, Tensor};
use candle_examples::token_output_stream::TokenOutputStream;
use candle_nn::VarBuilder;
use candle_transformers::generation::LogitsProcessor;
use hf_hub::{api::sync::Api, Repo, RepoType};
use tokenizers::Tokenizer;

struct TextGeneration {
model: Model,
image: Tensor,
device: Device,
tokenizer: TokenOutputStream,
logits_processor: LogitsProcessor,
repeat_penalty: f32,
repeat_last_n: usize,
}

impl TextGeneration {
#[allow(clippy::too_many_arguments)]
fn new(
model: Model,
image: Tensor,
tokenizer: Tokenizer,
seed: u64,
temp: Option<f64>,
top_p: Option<f64>,
repeat_penalty: f32,
repeat_last_n: usize,
device: &Device,
) -> Self {
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
Self {
model,
image,
tokenizer: TokenOutputStream::new(tokenizer),
logits_processor,
repeat_penalty,
repeat_last_n,
device: device.clone(),
}
}

fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
use std::io::Write;
self.tokenizer.clear();
let mut tokens = self
.tokenizer
.tokenizer()
.encode(prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
for &t in tokens.iter() {
if let Some(t) = self.tokenizer.next_token(t)? {
print!("{t}")
}
}
std::io::stdout().flush()?;

let mut generated_tokens = 0usize;
let eos_token = match self.tokenizer.get_token("<eos>") {
Some(token) => token,
None => anyhow::bail!("cannot find the <eos> token"),
};
let start_gen = std::time::Instant::now();
for index in 0..sample_len {
let context_size = if index > 0 { 1 } else { tokens.len() };
let start_pos = tokens.len().saturating_sub(context_size);
let ctxt = &tokens[start_pos..];
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
let logits = if index > 0 {
self.model.forward(&input)?
} else {
self.model.setup(&self.image, &input)?
};
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
let logits = if self.repeat_penalty == 1. {
logits
} else {
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
self.repeat_penalty,
&tokens[start_at..],
)?
};

let next_token = self.logits_processor.sample(&logits)?;
tokens.push(next_token);
generated_tokens += 1;
if next_token == eos_token {
break;
}
if let Some(t) = self.tokenizer.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
}
let dt = start_gen.elapsed();
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
std::io::stdout().flush()?;
println!(
"\n{generated_tokens} tokens generated ({:.2} token/s)",
generated_tokens as f64 / dt.as_secs_f64(),
);
Ok(())
}
}

#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,

/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,

#[arg(long)]
prompt: String,

/// The temperature used to generate samples.
#[arg(long)]
temperature: Option<f64>,

/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,

/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,

/// The length of the sample to generate (in tokens).
#[arg(long, short = 'n', default_value_t = 10000)]
sample_len: usize,

#[arg(long)]
model_id: Option<String>,

#[arg(long, default_value = "main")]
revision: String,

#[arg(long)]
tokenizer_file: Option<String>,

#[arg(long)]
weight_files: Option<String>,

/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
repeat_penalty: f32,

/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,

#[arg(long)]
image: String,
}

fn load_image<T: AsRef<std::path::Path>>(path: T, image_size: usize) -> anyhow::Result<Tensor> {
let img = image::ImageReader::open(path)?.decode()?;
let (height, width) = (image_size, image_size);
let img = img.resize_to_fill(
width as u32,
height as u32,
image::imageops::FilterType::Triangle,
);
let img = img.to_rgb8();
let img = img.into_raw();
let img = Tensor::from_vec(img, (height, width, 3), &Device::Cpu)?
.permute((2, 0, 1))?
.to_dtype(DType::F32)?
.affine(2. / 255., -1.)?;
Ok(img)
}

fn main() -> Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;

let args = Args::parse();
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature.unwrap_or(0.),
args.repeat_penalty,
args.repeat_last_n
);

let start = std::time::Instant::now();
let api = Api::new()?;
let model_id = match &args.model_id {
Some(model_id) => model_id.to_string(),
None => "google/paligemma-3b-mix-224".to_string(),
};
let repo = api.repo(Repo::with_revision(
model_id,
RepoType::Model,
args.revision,
));
let tokenizer_filename = match args.tokenizer_file {
Some(file) => std::path::PathBuf::from(file),
None => repo.get("tokenizer.json")?,
};
let filenames = match args.weight_files {
Some(files) => files
.split(',')
.map(std::path::PathBuf::from)
.collect::<Vec<_>>(),
None => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
};
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;

let device = candle_examples::device(args.cpu)?;
let dtype = if device.is_cuda() {
DType::BF16
} else {
DType::F32
};
let config = Config::paligemma_3b_224();
let image = load_image(&args.image, config.vision_config.image_size)?
.to_device(&device)?
.to_dtype(dtype)?
.unsqueeze(0)?;
println!("loaded image with shape {:?}", image);
let start = std::time::Instant::now();
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
let model = Model::new(&config, vb)?;
println!("loaded the model in {:?}", start.elapsed());

let mut pipeline = TextGeneration::new(
model,
image,
tokenizer,
args.seed,
args.temperature,
args.top_p,
args.repeat_penalty,
args.repeat_last_n,
&device,
);
let prompt = format!("{}\n", args.prompt);
pipeline.run(&prompt, args.sample_len)?;
Ok(())
}
20 changes: 20 additions & 0 deletions candle-transformers/src/models/gemma.rs
Original file line number Diff line number Diff line change
Expand Up @@ -362,6 +362,10 @@ impl Model {
})
}

pub fn embed_tokens(&self) -> &candle_nn::Embedding {
&self.embed_tokens
}

fn prepare_decoder_attention_mask(
&self,
b_size: usize,
Expand Down Expand Up @@ -400,6 +404,22 @@ impl Model {
.apply(&self.lm_head)
}

pub fn forward_embeds(
&mut self,
xs: &Tensor,
attn_mask: Option<&Tensor>,
seqlen_offset: usize,
) -> Result<Tensor> {
let (_, seq_len, _) = xs.dims3()?;
let mut xs = (xs * (self.hidden_size as f64).sqrt())?;
for layer in self.layers.iter_mut() {
xs = layer.forward(&xs, attn_mask, seqlen_offset)?
}
xs.narrow(1, seq_len - 1, 1)?
.apply(&self.norm)?
.apply(&self.lm_head)
}

pub fn clear_kv_cache(&mut self) {
for layer in self.layers.iter_mut() {
layer.clear_kv_cache()
Expand Down
1 change: 1 addition & 0 deletions candle-transformers/src/models/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,7 @@ pub mod moondream;
pub mod mpt;
pub mod olmo;
pub mod openclip;
pub mod paligemma;
pub mod parler_tts;
pub mod persimmon;
pub mod phi;
Expand Down
Loading

0 comments on commit 2f49e1b

Please sign in to comment.