- 【开箱即用】零编码,基于规则文件即可完成一站式数据采集、数据建模、算法建模和数据分析任务
- 【批流一体】支持离线、实时、离线实时混合三种读写模式,离线和实时数据全流程打通
- 【变化捕获】支持CDC变化数据捕获,实时监测数据变化并更新到目标,支持离线与实时数据多源异构融合
- 【来源丰富】支持关系数据库、NoSQL数据仓库、图数据库、文件等几十种数据源,满足各种数据对接需求
- 【信创支持】支持基于X86及ARM架构的国产CPU及操作系统部署,支持达梦、人大金仓等国产信创数据源
- 【机器学习】支持几十种机器学习算法,与各种数据源全流程融合,基于简单配置即可实现复杂的算法建模
- 【算法调优】支持机器学习算法参数调优,支持超参动态优化,算法训练及预测过程可观测,让数据更智能
- 【过程观测】支持单步调试,可监测每一个环节的任务执行情况,了解数据处理过程,核查计算结果和数据质量
- 【性能高效】支持跨数据源单表、多表、多表关联、整库数据采集和数据分析,可利用集群能力处理百亿级数据
- 【易于扩展】基于Stark规则引擎界面化封装,可在极短时间实现整套数据采集、数据建模和数据分析等中台产品
类型 | 数据源 | 批模式(读) | 批模式(写) | 流模式(读) | 流模式(写) | CDC(读) | CDC(写) |
---|---|---|---|---|---|---|---|
关系型数据库 | MySQL | √ | √ | √ | √ | 增,删,改 | 增,删,改 |
MariaDB | √ | √ | √ | √ | 增,删,改 | 增,删,改 | |
Oracle | √ | √ | √ | √ | 增,删,改 | 增,删,改 | |
PostgreSQL | √ | √ | √ | √ | 增,删,改 | 增,删,改 | |
SQLServer | √ | √ | √ | √ | 增,删,改 | 增,删,改 | |
DB2 | √ | √ | √ | √ | 增,删,改 | 增,删,改 | |
NoSQL数据库 | HBase | √ | √ | √ | √ | 增,删,改 | 增,删,改 |
Phoenix | √ | √ | √ | 增,删,改 | |||
Cassandra | √ | √ | √ | √ | 增,删,改 | 增,删,改 | |
MongoDB | √ | √ | √ | √ | 增,删,改 | 增,删,改 | |
Redis | √ | √ | √ | √ | 增 | 增,删,改 | |
Elasticsearch | √ | √ | √ | √ | 增 | 增,删,改 | |
数据仓库 | Hive | √ | √ | √ | 增 | ||
StarRocks | √ | √ | √ | 增,删,改 | |||
Doris | √ | √ | √ | 增,删,改 | |||
ClickHouse | √ | √ | √ | √ | 增,删,改 | 增,删,改 | |
消息中间件 | Kafka | √ | √ | √ | √ | 增 | 增 |
图数据库 | Neo4j | √ | √ | √ | √ | 增 | 增,删,改 |
文件数据源 | Text | √ | √ | √ | √ | 增 | 增 |
CSV | √ | √ | √ | √ | 增 | 增 | |
Excel | √ | √ | √ | √ | 增 | 增 | |
JSON | √ | √ | √ | √ | 增 | 增 | |
XML | √ | √ | √ | √ | 增 | 增 | |
ORC | √ | √ | √ | √ | 增 | 增 | |
Parquet | √ | √ | √ | √ | 增 | 增 | |
Avro | √ | √ | √ | √ | 增 | 增 | |
信创数据源 | OceanBase | √ | √ | √ | √ | 增,删,改 | 增,删,改 |
GaussDB | √ | √ | √ | √ | 增,删,改 | 增,删,改 | |
达梦 | √ | √ | √ | √ | 增,删,改 | 增,删,改 | |
人大金仓 | √ | √ | √ | √ | 增,删,改 | 增,删,改 |
学习方式 | 算法类型 | 算法名称 | 算法简称 | 算法描述 | 应用场景 |
---|---|---|---|---|---|
有监督学习 | 推荐算法 | AlternatingLeastSquares | ALS | 交替最小二乘法 | 数据推荐 |
分类算法 | DecisionTreeClassifier | DTC | 决策树分类 | 二分类,多分类 | |
FMClassifier | FMC | 因子分解机分类 | 二分类 | ||
GBTClassifier | GBTC | 梯度提升树分类 | 二分类 | ||
LogisticRegression | LRC | 逻辑回归分类 | 二分类 | ||
MultilayerPerceptronClassifier | MLPC | 多层感知器分类 | 二分类,多分类 | ||
NaiveBayes | NBC | 朴素贝叶斯分类 | 二分类,多分类 | ||
RandomForestClassifier | RFC | 随机森林分类 | 二分类,多分类 | ||
LinearSVC | SVC | 线性SVM分类 | 二分类 | ||
回归算法 | AFTSurvivalRegression | AFTSR | 加速失效时间模型回归 | 数据预测 | |
DecisionTreeRegressor | DTR | 决策树回归 | 数据预测 | ||
FMRegressor | FMR | 因子分解机回归 | 数据预测 | ||
GBTRegressor | GBTR | 梯度提升树回归 | 数据预测 | ||
GeneralizedLinearRegression | GLMR | 广义线性模型回归 | 数据预测 | ||
IsotonicRegression | IR | 保序回归 | 数据预测 | ||
LinearRegression | LR | 线性回归 | 数据预测 | ||
RandomForestRegressor | RFR | 随机森林回归 | 数据预测 | ||
无监督学习 | 聚类算法 | KMeans | KMEANS | K均值聚类 | 聚类 |
GaussianMixture | GM | 高斯混合模型 | 聚类 | ||
LDA | LDA | 潜在狄利克雷分配 | 聚类 |
{
"env": {
"param": "hdfs://cluster/starks/params/test.json",
"udf": [
{
"name": "maps",
"class": "cn.hex.bricks.udf.Maps",
"jar": "hdfs://cluster/starks/udf/bricks.jar",
"temporary": "true"
}
]
},
"source": [
{
"identifier": "ss001",
"name": "用户基础信息表(存量数据)",
"type": "MYSQL",
"mode": "BATCH",
"connection": {
"url": "jdbc:mysql://127.0.0.1:3306/test",
"driver": "com.mysql.cj.jdbc.Driver",
"user": "root",
"password": "root",
"dataset": "users"
}
},
{
"identifier": "ss002",
"name": "用户详细信息表(存量数据)",
"type": "HIVE",
"mode": "BATCH",
"connection": {
"url": "thrift://127.0.0.1:9083",
"database": "test",
"dataset": "users"
}
},
{
"identifier": "ss003",
"name": "用户维度信息表(实时更新)",
"type": "CSV",
"mode": "STREAM",
"connection": {
"url": "hdfs://cluster/test/"
}
}
],
"transform": [
{
"identifier": "tf001",
"name": "根据CSV中的用户维度信息,对用户基本信息和详细信息进行关联合并",
"source": [
"ss001",
"ss002",
"ss003"
],
"sql": "select ss001.*, ss002.detail as detail from ss001 inner join ss002 on ss001.id = ss002.id inner join ss003 on ss001.id = ss003.id",
"transout": [
"ts001"
]
}
],
"transout": [
{
"identifier": "ts001",
"transform": [
"tf001"
],
"sink": [
"sk_jdbc_mysql",
"sk_jdbc_mariadb",
"sk_jdbc_oracle",
"sk_jdbc_postgresql",
"sk_jdbc_sqlserver",
"sk_jdbc_db2",
"sk_jdbc_hive",
"sk_jdbc_doris",
"sk_jdbc_starrocks",
"sk_jdbc_phoenix",
"sk_jdbc_dameng",
"sk_jdbc_kingbase",
"sk_file_excel",
"sk_file_json",
"sk_file_text",
"sk_file_csv",
"sk_file_orc",
"sk_file_parquet",
"sk_file_xml",
"sk_hive",
"sk_kafka",
"sk_hbase",
"sk_mongodb",
"sk_elasticsearch"
]
}
],
"sink": [
{
"identifier": "sk_jdbc_mysql",
"name": "通过JDBC协议输出到MYSQL(实时更新)",
"type": "MYSQL",
"mode": "APPEND",
"connection": {
"url": "jdbc:mysql://127.0.0.1:3306/stark",
"driver": "com.mysql.cj.jdbc.Driver",
"user": "stark",
"password": "stark",
"dataset": "users"
}
},
{
"identifier": "sk_jdbc_mariadb",
"name": "通过JDBC协议输出到MariaDB(实时更新)",
"type": "MARIADB",
"mode": "APPEND",
"connection": {
"url": "jdbc:mariadb://127.0.0.1:3306/stark",
"driver": "org.mariadb.jdbc.Driver",
"user": "stark",
"password": "stark",
"dataset": "users"
}
},
{
"identifier": "sk_jdbc_oracle",
"name": "通过JDBC协议输出到ORACLE(实时更新)",
"type": "ORACLE",
"mode": "APPEND",
"connection": {
"url": "jdbc:oracle:thin:@127.0.0.1:1521:XE",
"driver": "oracle.jdbc.OracleDriver",
"user": "stark",
"password": "stark",
"dataset": "users"
}
},
{
"identifier": "sk_jdbc_postgresql",
"name": "通过JDBC协议输出到POSTGRESQL(实时更新)",
"type": "POSTGRESQL",
"mode": "APPEND",
"connection": {
"url": "jdbc:postgresql://127.0.0.1:5432/stark",
"driver": "org.postgresql.Driver",
"user": "stark",
"password": "stark",
"dataset": "users"
}
},
{
"identifier": "sk_jdbc_sqlserver",
"name": "通过JDBC协议输出到SQLSERVER(实时更新)",
"type": "SQLSERVER",
"mode": "APPEND",
"connection": {
"url": "jdbc:sqlserver://;serverName=127.0.0.1;port=1433;databaseName=stark",
"driver": "com.microsoft.sqlserver.jdbc.SQLServerDriver",
"user": "sa",
"password": "password",
"schema": "stark",
"dataset": "users"
}
},
{
"identifier": "sk_jdbc_db2",
"name": "通过JDBC协议输出到DB2(实时更新)",
"type": "DB2",
"mode": "APPEND",
"connection": {
"url": "jdbc:db2://127.0.0.1:50000/stark",
"driver": "com.ibm.db2.jcc.DB2Driver",
"user": "stark",
"password": "stark",
"dataset": "users"
}
},
{
"identifier": "sk_jdbc_hive",
"name": "通过JDBC协议输出到HIVE(实时更新)",
"type": "HIVEJDBC",
"mode": "APPEND",
"connection": {
"url": "jdbc:hive2://127.0.0.1:10000/stark",
"driver": "org.apache.hive.jdbc.HiveDriver",
"user": "stark",
"dataset": "users"
}
},
{
"identifier": "sk_jdbc_doris",
"name": "通过JDBC协议输出到DORIS(实时更新)",
"type": "DORIS",
"mode": "APPEND",
"connection": {
"url": "jdbc:mysql://127.0.0.1:3306/stark",
"driver": "com.mysql.cj.jdbc.Driver",
"user": "stark",
"password": "stark",
"dataset": "users"
}
},
{
"identifier": "sk_jdbc_starrocks",
"name": "通过JDBC协议输出到STARROCKS(实时更新)",
"type": "STARROCKS",
"mode": "APPEND",
"connection": {
"url": "jdbc:mysql://127.0.0.1:3306/stark",
"driver": "com.mysql.cj.jdbc.Driver",
"user": "stark",
"password": "stark",
"dataset": "users"
}
},
{
"identifier": "sk_jdbc_phoenix",
"name": "通过JDBC协议输出到PHOENIX(实时更新)",
"type": "PHOENIX",
"mode": "APPEND",
"connection": {
"url": "jdbc:phoenix:node01,node02,node03:2181",
"driver": "org.apache.phoenix.jdbc.PhoenixDriver",
"schema": "STARK",
"dataset": "users"
}
},
{
"identifier": "sk_jdbc_dameng",
"name": "通过JDBC协议输出到DAMENG(实时更新)",
"type": "DAMENG",
"mode": "APPEND",
"connection": {
"url": "jdbc:dm://127.0.0.1:5236/STARK",
"driver": "dm.jdbc.driver.DmDriver",
"user": "STARK",
"password": "STARK",
"dataset": "users"
}
},
{
"identifier": "sk_jdbc_kingbase",
"name": "通过JDBC协议输出到KINGBASE(实时更新)",
"type": "KINGBASE",
"mode": "APPEND",
"connection": {
"url": "jdbc:kingbase8://127.0.0.1:54321/stark",
"driver": "com.kingbase8.Driver",
"user": "kingbase",
"password": "kingbase",
"dataset": "users"
}
},
{
"identifier": "sk_file_excel",
"name": "输出到EXCEL文件(实时更新)",
"type": "EXCEL",
"mode": "APPEND",
"connection": {
"url": "hdfs://cluster/stark/users.xlsx"
}
},
{
"identifier": "sk_file_json",
"name": "输出到JSON文件(实时更新)",
"type": "JSON",
"mode": "APPEND",
"connection": {
"url": "hdfs://cluster/stark/users.json"
}
},
{
"identifier": "sk_file_text",
"name": "输出到TXT文件(实时更新)",
"type": "TEXT",
"mode": "APPEND",
"connection": {
"url": "hdfs://cluster/stark/users.txt"
}
},
{
"identifier": "sk_file_csv",
"name": "输出到CSV文件(实时更新)",
"type": "CSV",
"mode": "APPEND",
"connection": {
"url": "hdfs://cluster/stark/users.csv"
}
},
{
"identifier": "sk_file_orc",
"name": "输出到ORC文件(实时更新)",
"type": "ORC",
"mode": "APPEND",
"connection": {
"url": "hdfs://cluster/stark/users.orc"
}
},
{
"identifier": "sk_file_parquet",
"name": "输出到PARQUET文件(实时更新)",
"type": "PARQUET",
"mode": "APPEND",
"connection": {
"url": "hdfs://cluster/stark/users.parquet"
}
},
{
"identifier": "sk_file_xml",
"name": "输出到XML文件(实时更新)",
"type": "XML",
"mode": "APPEND",
"connection": {
"url": "hdfs://cluster/stark/users.xml"
}
},
{
"identifier": "sk_hive",
"name": "通过ThriftServer协议输出到HIVE(实时更新)",
"type": "HIVE",
"mode": "APPEND",
"connection": {
"url": "thrift://127.0.0.1:9083",
"database": "stark",
"dataset": "users"
}
},
{
"identifier": "sk_kafka",
"name": "输出到Kafka消息队列(实时更新)",
"type": "KAFKA",
"mode": "APPEND",
"connection": {
"kafka.bootstrap.servers": "node01:9092,node02:9092,node03:9092",
"topic": "users"
}
},
{
"identifier": "sk_hbase",
"name": "输出到HBase列存数据库(实时更新)",
"type": "HBASE",
"mode": "APPEND",
"connection": {
"url": "node01,node02,node03",
"port": "2181",
"schema": "stark",
"dataset": "users",
"primaryKey": "id"
}
},
{
"identifier": "sk_mongodb",
"name": "输出到MongoDB文档数据库(实时更新)",
"type": "MONGODB",
"mode": "APPEND",
"connection": {
"url": "mongodb://127.0.0.1:27017",
"database": "stark",
"dataset": "users"
}
},
{
"identifier": "sk_elasticsearch",
"name": "输出到ElasticSearch全文检索数据库(实时更新)",
"type": "ELASTICSEARCH",
"mode": "APPEND",
"connection": {
"url": "127.0.0.1",
"port": "9200",
"dataset": "users"
}
}
]
}
- 12种JDBC类数据源
[MySQL/MariaDB/Oracle/PostgreSQL/SQLServer/DB2/HiveJDBC/Doris/StarRocks/Phoenix/达梦Dameng/人大金仓Kingbase]
- 7种文件类数据源
[Excel/JSON/Text/CSV/ORC/Parquet/XML]
- 点击下载:Stark-1.3.0-preview.jar
- 修改
Stark-1.3.0-preview.jar
根目录下的rule.json
规则文件,指定source
和sink
中的数据源连接信息 - 上传修改后的
Stark-1.3.0-preview.jar
到服务器(需要安装Spark3.x客户端,配置JAVA_HOME环境变量即可运行) - 进入
$SPARK_HOME/bin
目录下,执行spark-submit --master local[*] Stark-1.3.0-preview.jar
命令,等待任务执行结束 - 查看
sink
节点指定的数据连接及输出,验证数据是否写入成功
注意:
[预览版]
只能使用[12种JDBC类数据源]以及[7种文件类数据源]
做[批处理]
操作,想要体验Stark引擎完整版功能请联系↓↓↓
- 通过以下方式了解更多关于Stark引擎的相关信息,可试用完整版功能,也可接受业务定制化开发需求↓↓↓
- WeChat:xxx-hx-xxx(潇湘夜雨)
- Email:[email protected]