Skip to content

Commit

Permalink
ht/spacing update
Browse files Browse the repository at this point in the history
  • Loading branch information
hannah-tillman committed Jan 18, 2024
1 parent b413000 commit 836aab9
Show file tree
Hide file tree
Showing 2 changed files with 56 additions and 14 deletions.
35 changes: 28 additions & 7 deletions h2o-bindings/bin/custom/python/gen_anovaglm.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,10 @@ def result(self):
>>> train = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate_complete.csv.zip")
>>> x = ['AGE', 'VOL', 'DCAPS']
>>> y = 'CAPSULE'
>>> anova_model = H2OANOVAGLMEstimator(family='binomial', lambda_=0, missing_values_handling="skip", highest_interaction_term=2)
>>> anova_model = H2OANOVAGLMEstimator(family='binomial',
... lambda_=0,
... missing_values_handling="skip",
... highest_interaction_term=2)
>>> anova_model.train(x=x, y=y, training_frame=train)
>>> anova_model.summary()
""",
Expand All @@ -75,7 +78,10 @@ def result(self):
>>> train = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate_complete.csv.zip")
>>> x = ['AGE', 'VOL', 'DCAPS']
>>> y = 'CAPSULE'
>>> anova_model = H2OANOVAGLMEstimator(family='binomial', lambda_=0, missing_values_handling="skip", link="family_default")
>>> anova_model = H2OANOVAGLMEstimator(family='binomial',
... lambda_=0,
... missing_values_handling="skip",
... link="family_default")
>>> anova_model.train(x=x, y=y, training_frame=train)
>>> anova_model.summary()
""",
Expand All @@ -86,7 +92,10 @@ def result(self):
>>> train = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate_complete.csv.zip")
>>> x = ['AGE', 'VOL', 'DCAPS']
>>> y = 'CAPSULE'
>>> anova_model = H2OANOVAGLMEstimator(family='binomial', lambda_=0, missing_values_handling="skip", nparallelism=4)
>>> anova_model = H2OANOVAGLMEstimator(family='binomial',
... lambda_=0,
... missing_values_handling="skip",
... nparallelism=4)
>>> anova_model.train(x=x, y=y, training_frame=train)
>>> anova_model.summary()
""",
Expand All @@ -97,7 +106,10 @@ def result(self):
>>> train = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate_complete.csv.zip")
>>> x = ['AGE', 'VOL', 'DCAPS']
>>> y = 'CAPSULE'
>>> anova_model = H2OANOVAGLMEstimator(family='binomial', lambda_=0, missing_values_handling="skip", prior=0.0)
>>> anova_model = H2OANOVAGLMEstimator(family='binomial',
... lambda_=0,
... missing_values_handling="skip",
... prior=0.0)
>>> anova_model.train(x=x, y=y, training_frame=train)
>>> anova_model.summary()
""",
Expand All @@ -108,7 +120,10 @@ def result(self):
>>> train = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate_complete.csv.zip")
>>> x = ['AGE', 'VOL', 'DCAPS']
>>> y = 'CAPSULE'
>>> anova_model = H2OANOVAGLMEstimator(family='binomial', lambda_=0, missing_values_handling="skip", save_transformed_framekeys=False)
>>> anova_model = H2OANOVAGLMEstimator(family='binomial',
... lambda_=0,
... missing_values_handling="skip",
... save_transformed_framekeys=False)
>>> anova_model.train(x=x, y=y, training_frame=train)
>>> anova_model.summary()
""",
Expand All @@ -119,7 +134,10 @@ def result(self):
>>> train = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate_complete.csv.zip")
>>> x = ['AGE', 'VOL', 'DCAPS']
>>> y = 'CAPSULE'
>>> anova_model = H2OANOVAGLMEstimator(family='binomial', lambda_=0, missing_values_handling="skip", tweedie_link_power=1.0)
>>> anova_model = H2OANOVAGLMEstimator(family='binomial',
... lambda_=0,
... missing_values_handling="skip",
... tweedie_link_power=1.0)
>>> anova_model.train(x=x, y=y, training_frame=train)
>>> anova_model.summary()
""",
Expand All @@ -130,7 +148,10 @@ def result(self):
>>> train = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate_complete.csv.zip")
>>> x = ['AGE', 'VOL', 'DCAPS']
>>> y = 'CAPSULE'
>>> anova_model = H2OANOVAGLMEstimator(family='binomial', lambda_=0, missing_values_handling="skip", tweedie_variance_power=0.0)
>>> anova_model = H2OANOVAGLMEstimator(family='binomial',
... lambda_=0,
... missing_values_handling="skip",
... tweedie_variance_power=0.0)
>>> anova_model.train(x=x, y=y, training_frame=train)
>>> anova_model.summary()
"""
Expand Down
35 changes: 28 additions & 7 deletions h2o-py/h2o/estimators/anovaglm.py
Original file line number Diff line number Diff line change
Expand Up @@ -396,7 +396,10 @@ def tweedie_variance_power(self):
>>> train = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate_complete.csv.zip")
>>> x = ['AGE', 'VOL', 'DCAPS']
>>> y = 'CAPSULE'
>>> anova_model = H2OANOVAGLMEstimator(family='binomial', lambda_=0, missing_values_handling="skip", tweedie_variance_power=0.0)
>>> anova_model = H2OANOVAGLMEstimator(family='binomial',
... lambda_=0,
... missing_values_handling="skip",
... tweedie_variance_power=0.0)
>>> anova_model.train(x=x, y=y, training_frame=train)
>>> anova_model.summary()
"""
Expand All @@ -422,7 +425,10 @@ def tweedie_link_power(self):
>>> train = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate_complete.csv.zip")
>>> x = ['AGE', 'VOL', 'DCAPS']
>>> y = 'CAPSULE'
>>> anova_model = H2OANOVAGLMEstimator(family='binomial', lambda_=0, missing_values_handling="skip", tweedie_link_power=1.0)
>>> anova_model = H2OANOVAGLMEstimator(family='binomial',
... lambda_=0,
... missing_values_handling="skip",
... tweedie_link_power=1.0)
>>> anova_model.train(x=x, y=y, training_frame=train)
>>> anova_model.summary()
"""
Expand Down Expand Up @@ -563,7 +569,10 @@ def link(self):
>>> train = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate_complete.csv.zip")
>>> x = ['AGE', 'VOL', 'DCAPS']
>>> y = 'CAPSULE'
>>> anova_model = H2OANOVAGLMEstimator(family='binomial', lambda_=0, missing_values_handling="skip", link="family_default")
>>> anova_model = H2OANOVAGLMEstimator(family='binomial',
... lambda_=0,
... missing_values_handling="skip",
... link="family_default")
>>> anova_model.train(x=x, y=y, training_frame=train)
>>> anova_model.summary()
"""
Expand All @@ -590,7 +599,10 @@ def prior(self):
>>> train = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate_complete.csv.zip")
>>> x = ['AGE', 'VOL', 'DCAPS']
>>> y = 'CAPSULE'
>>> anova_model = H2OANOVAGLMEstimator(family='binomial', lambda_=0, missing_values_handling="skip", prior=0.0)
>>> anova_model = H2OANOVAGLMEstimator(family='binomial',
... lambda_=0,
... missing_values_handling="skip",
... prior=0.0)
>>> anova_model.train(x=x, y=y, training_frame=train)
>>> anova_model.summary()
"""
Expand Down Expand Up @@ -779,7 +791,10 @@ def save_transformed_framekeys(self):
>>> train = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate_complete.csv.zip")
>>> x = ['AGE', 'VOL', 'DCAPS']
>>> y = 'CAPSULE'
>>> anova_model = H2OANOVAGLMEstimator(family='binomial', lambda_=0, missing_values_handling="skip", save_transformed_framekeys=False)
>>> anova_model = H2OANOVAGLMEstimator(family='binomial',
... lambda_=0,
... missing_values_handling="skip",
... save_transformed_framekeys=False)
>>> anova_model.train(x=x, y=y, training_frame=train)
>>> anova_model.summary()
"""
Expand All @@ -806,7 +821,10 @@ def highest_interaction_term(self):
>>> train = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate_complete.csv.zip")
>>> x = ['AGE', 'VOL', 'DCAPS']
>>> y = 'CAPSULE'
>>> anova_model = H2OANOVAGLMEstimator(family='binomial', lambda_=0, missing_values_handling="skip", highest_interaction_term=2)
>>> anova_model = H2OANOVAGLMEstimator(family='binomial',
... lambda_=0,
... missing_values_handling="skip",
... highest_interaction_term=2)
>>> anova_model.train(x=x, y=y, training_frame=train)
>>> anova_model.summary()
"""
Expand All @@ -832,7 +850,10 @@ def nparallelism(self):
>>> train = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/prostate/prostate_complete.csv.zip")
>>> x = ['AGE', 'VOL', 'DCAPS']
>>> y = 'CAPSULE'
>>> anova_model = H2OANOVAGLMEstimator(family='binomial', lambda_=0, missing_values_handling="skip", nparallelism=4)
>>> anova_model = H2OANOVAGLMEstimator(family='binomial',
... lambda_=0,
... missing_values_handling="skip",
... nparallelism=4)
>>> anova_model.train(x=x, y=y, training_frame=train)
>>> anova_model.summary()
"""
Expand Down

0 comments on commit 836aab9

Please sign in to comment.