Skip to content

Commit

Permalink
ht/spacing update
Browse files Browse the repository at this point in the history
  • Loading branch information
hannah-tillman committed Jan 18, 2024
1 parent 9f1e7f5 commit 195bc71
Show file tree
Hide file tree
Showing 2 changed files with 74 additions and 20 deletions.
47 changes: 37 additions & 10 deletions h2o-bindings/bin/custom/python/gen_modelselection.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,9 @@ def coef_norm(self, predictor_size=None):
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/logreg/prostate.csv")
>>> predictors = ["AGE", "RACE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS"]
>>> response = "GLEASON"
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7, seed=12345, mode="maxr")
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7,
... seed=12345,
... mode="maxr")
>>> maxrModel.train(x=predictors, y=response, training_frame=prostate)
>>> results = maxrModel.result()
>>> print(results)
Expand Down Expand Up @@ -119,7 +121,9 @@ def coef(self, predictor_size=None):
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/logreg/prostate.csv")
>>> predictors = ["AGE", "RACE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS"]
>>> response = "GLEASON"
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7, seed=12345, mode="maxr")
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7,
... seed=12345,
... mode="maxr")
>>> maxrModel.train(x=predictors, y=response, training_frame=prostate)
>>> results = maxrModel.result()
>>> print(results)
Expand Down Expand Up @@ -265,7 +269,10 @@ def get_best_model_predictors(self):
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/logreg/prostate.csv")
>>> predictors = ["AGE", "RACE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS"]
>>> response = "GLEASON"
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7, seed=12345, mode="maxr", build_glm_model=False)
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7,
... seed=12345,
... mode="maxr",
... build_glm_model=False)
>>> maxrModel.train(x=predictors, y=response, training_frame=prostate)
>>> results = maxrModel.result()
>>> print(results)
Expand All @@ -279,7 +286,10 @@ def get_best_model_predictors(self):
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/logreg/prostate.csv")
>>> predictors = ["AGE", "RACE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS"]
>>> response = "GLEASON"
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7, seed=12345, mode="maxr", influence="dfbetas")
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7,
... seed=12345,
... mode="maxr",
... influence="dfbetas")
>>> maxrModel.train(x=predictors, y=response, training_frame=prostate)
>>> results = maxrModel.result()
>>> print(results)
Expand All @@ -293,7 +303,10 @@ def get_best_model_predictors(self):
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/logreg/prostate.csv")
>>> predictors = ["AGE", "RACE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS"]
>>> response = "GLEASON"
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7, seed=12345, mode="maxr", multinode_mode=False)
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7,
... seed=12345,
... mode="maxr",
... multinode_mode=False)
>>> maxrModel.train(x=predictors, y=response, training_frame=prostate)
>>> results = maxrModel.result()
>>> print(results)
Expand All @@ -307,7 +320,10 @@ def get_best_model_predictors(self):
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/logreg/prostate.csv")
>>> predictors = ["AGE", "RACE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS"]
>>> response = "GLEASON"
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7, seed=12345, mode="maxr", nparallelism=0)
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7,
... seed=12345,
... mode="maxr",
... nparallelism=0)
>>> maxrModel.train(x=predictors, y=response, training_frame=prostate)
>>> results = maxrModel.result()
>>> print(results)
Expand All @@ -321,7 +337,10 @@ def get_best_model_predictors(self):
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/logreg/prostate.csv")
>>> predictors = ["AGE", "RACE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS"]
>>> response = "GLEASON"
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7, seed=12345, mode="maxr", p_values_threshold=0.0)
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7,
... seed=12345,
... mode="maxr",
... p_values_threshold=0.0)
>>> maxrModel.train(x=predictors, y=response, training_frame=prostate)
>>> results = maxrModel.result()
>>> print(results)
Expand All @@ -335,7 +354,10 @@ def get_best_model_predictors(self):
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/logreg/prostate.csv")
>>> predictors = ["AGE", "RACE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS"]
>>> response = "GLEASON"
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7, seed=12345, mode="maxr", early_stopping=False)
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7,
... seed=12345,
... mode="maxr",
... early_stopping=False)
>>> maxrModel.train(x=predictors, y=response, training_frame=prostate)
>>> results = maxrModel.result()
>>> print(results)
Expand All @@ -349,7 +371,10 @@ def get_best_model_predictors(self):
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/logreg/prostate.csv")
>>> predictors = ["AGE", "RACE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS"]
>>> response = "GLEASON"
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7, seed=12345, mode="maxr", obj_reg=-1.0)
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7,
... seed=12345,
... mode="maxr",
... obj_reg=-1.0)
>>> maxrModel.train(x=predictors, y=response, training_frame=prostate)
>>> results = maxrModel.result()
>>> print(results)
Expand All @@ -363,7 +388,9 @@ def get_best_model_predictors(self):
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/logreg/prostate.csv")
>>> predictors = ["AGE", "RACE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS"]
>>> response = "GLEASON"
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7, seed=12345, mode="maxr")
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7,
... seed=12345,
... mode="maxr")
>>> maxrModel.train(x=predictors, y=response, training_frame=prostate)
>>> results = maxrModel.result()
>>> print(results)
Expand Down
47 changes: 37 additions & 10 deletions h2o-py/h2o/estimators/model_selection.py
Original file line number Diff line number Diff line change
Expand Up @@ -1007,7 +1007,10 @@ def obj_reg(self):
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/logreg/prostate.csv")
>>> predictors = ["AGE", "RACE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS"]
>>> response = "GLEASON"
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7, seed=12345, mode="maxr", obj_reg=-1.0)
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7,
... seed=12345,
... mode="maxr",
... obj_reg=-1.0)
>>> maxrModel.train(x=predictors, y=response, training_frame=prostate)
>>> results = maxrModel.result()
>>> print(results)
Expand Down Expand Up @@ -1154,7 +1157,10 @@ def custom_metric_func(self):
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/logreg/prostate.csv")
>>> predictors = ["AGE", "RACE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS"]
>>> response = "GLEASON"
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7, seed=12345, mode="maxr", early_stopping=False)
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7,
... seed=12345,
... mode="maxr",
... early_stopping=False)
>>> maxrModel.train(x=predictors, y=response, training_frame=prostate)
>>> results = maxrModel.result()
>>> print(results)
Expand Down Expand Up @@ -1183,7 +1189,10 @@ def nparallelism(self):
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/logreg/prostate.csv")
>>> predictors = ["AGE", "RACE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS"]
>>> response = "GLEASON"
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7, seed=12345, mode="maxr", nparallelism=0)
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7,
... seed=12345,
... mode="maxr",
... nparallelism=0)
>>> maxrModel.train(x=predictors, y=response, training_frame=prostate)
>>> results = maxrModel.result()
>>> print(results)
Expand Down Expand Up @@ -1244,7 +1253,9 @@ def mode(self):
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/logreg/prostate.csv")
>>> predictors = ["AGE", "RACE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS"]
>>> response = "GLEASON"
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7, seed=12345, mode="maxr")
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7,
... seed=12345,
... mode="maxr")
>>> maxrModel.train(x=predictors, y=response, training_frame=prostate)
>>> results = maxrModel.result()
>>> print(results)
Expand Down Expand Up @@ -1276,7 +1287,10 @@ def build_glm_model(self):
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/logreg/prostate.csv")
>>> predictors = ["AGE", "RACE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS"]
>>> response = "GLEASON"
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7, seed=12345, mode="maxr", build_glm_model=False)
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7,
... seed=12345,
... mode="maxr",
... build_glm_model=False)
>>> maxrModel.train(x=predictors, y=response, training_frame=prostate)
>>> results = maxrModel.result()
>>> print(results)
Expand Down Expand Up @@ -1306,7 +1320,10 @@ def p_values_threshold(self):
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/logreg/prostate.csv")
>>> predictors = ["AGE", "RACE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS"]
>>> response = "GLEASON"
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7, seed=12345, mode="maxr", p_values_threshold=0.0)
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7,
... seed=12345,
... mode="maxr",
... p_values_threshold=0.0)
>>> maxrModel.train(x=predictors, y=response, training_frame=prostate)
>>> results = maxrModel.result()
>>> print(results)
Expand Down Expand Up @@ -1335,7 +1352,10 @@ def influence(self):
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/logreg/prostate.csv")
>>> predictors = ["AGE", "RACE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS"]
>>> response = "GLEASON"
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7, seed=12345, mode="maxr", influence="dfbetas")
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7,
... seed=12345,
... mode="maxr",
... influence="dfbetas")
>>> maxrModel.train(x=predictors, y=response, training_frame=prostate)
>>> results = maxrModel.result()
>>> print(results)
Expand Down Expand Up @@ -1365,7 +1385,10 @@ def multinode_mode(self):
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/logreg/prostate.csv")
>>> predictors = ["AGE", "RACE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS"]
>>> response = "GLEASON"
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7, seed=12345, mode="maxr", multinode_mode=False)
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7,
... seed=12345,
... mode="maxr",
... multinode_mode=False)
>>> maxrModel.train(x=predictors, y=response, training_frame=prostate)
>>> results = maxrModel.result()
>>> print(results)
Expand Down Expand Up @@ -1432,7 +1455,9 @@ def coef_norm(self, predictor_size=None):
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/logreg/prostate.csv")
>>> predictors = ["AGE", "RACE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS"]
>>> response = "GLEASON"
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7, seed=12345, mode="maxr")
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7,
... seed=12345,
... mode="maxr")
>>> maxrModel.train(x=predictors, y=response, training_frame=prostate)
>>> results = maxrModel.result()
>>> print(results)
Expand Down Expand Up @@ -1500,7 +1525,9 @@ def coef(self, predictor_size=None):
>>> prostate = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/logreg/prostate.csv")
>>> predictors = ["AGE", "RACE", "CAPSULE", "DCAPS", "PSA", "VOL", "DPROS"]
>>> response = "GLEASON"
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7, seed=12345, mode="maxr")
>>> maxrModel = H2OModelSelectionEstimator(max_predictor_number=7,
... seed=12345,
... mode="maxr")
>>> maxrModel.train(x=predictors, y=response, training_frame=prostate)
>>> results = maxrModel.result()
>>> print(results)
Expand Down

0 comments on commit 195bc71

Please sign in to comment.