Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[R] Replace vignettes and examples #11123

Merged
merged 22 commits into from
Jan 15, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
111 changes: 45 additions & 66 deletions R-package/R/xgb.importance.R
Original file line number Diff line number Diff line change
Expand Up @@ -38,85 +38,64 @@
#' (based on C++ code), it starts at 0 (as in C/C++ or Python) instead of 1 (usual in R).
#'
#' @examples
#'
#' # binomial classification using "gbtree":
#' data(agaricus.train, package = "xgboost")
#'
#' bst <- xgb.train(
#' data = xgb.DMatrix(agaricus.train$data, label = agaricus.train$label),
#' nrounds = 2,
#' params = xgb.params(
#' max_depth = 2,
#' nthread = 2,
#' objective = "binary:logistic"
#' )
#' # binary classification using "gbtree":
#' data("ToothGrowth")
#' x <- ToothGrowth[, c("len", "dose")]
#' y <- ToothGrowth$supp
#' model_tree_binary <- xgboost(
#' x, y,
#' nrounds = 5L,
#' nthreads = 1L,
#' booster = "gbtree",
#' max_depth = 2L
#' )
#'
#' xgb.importance(model = bst)
#'
#' # binomial classification using "gblinear":
#' bst <- xgb.train(
#' data = xgb.DMatrix(agaricus.train$data, label = agaricus.train$label),
#' nrounds = 20,
#' params = xgb.params(
#' booster = "gblinear",
#' learning_rate = 0.3,
#' nthread = 1,
#' objective = "binary:logistic"
#' )
#' xgb.importance(model_tree_binary)
#'
#' # binary classification using "gblinear":
#' model_tree_linear <- xgboost(
#' x, y,
#' nrounds = 5L,
#' nthreads = 1L,
#' booster = "gblinear",
#' learning_rate = 0.3
#' )
#'
#' xgb.importance(model = bst)
#'
#' # multiclass classification using "gbtree":
#' nclass <- 3
#' nrounds <- 10
#' mbst <- xgb.train(
#' data = xgb.DMatrix(
#' as.matrix(iris[, -5]),
#' label = as.numeric(iris$Species) - 1
#' ),
#' nrounds = nrounds,
#' params = xgb.params(
#' max_depth = 3,
#' nthread = 2,
#' objective = "multi:softprob",
#' num_class = nclass
#' )
#' xgb.importance(model_tree_linear)
#'
#' # multi-class classification using "gbtree":
#' data("iris")
#' x <- iris[, c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")]
#' y <- iris$Species
#' model_tree_multi <- xgboost(
#' x, y,
#' nrounds = 5L,
#' nthreads = 1L,
#' booster = "gbtree",
#' max_depth = 3
#' )
#'
#' # all classes clumped together:
#' xgb.importance(model = mbst)
#'
#' xgb.importance(model_tree_multi)
#' # inspect importances separately for each class:
#' num_classes <- 3L
#' nrounds <- 5L
#' xgb.importance(
#' model = mbst, trees = seq(from = 1, by = nclass, length.out = nrounds)
#' model_tree_multi, trees = seq(from = 1, by = num_classes, length.out = nrounds)
#' )
#' xgb.importance(
#' model = mbst, trees = seq(from = 2, by = nclass, length.out = nrounds)
#' model_tree_multi, trees = seq(from = 2, by = num_classes, length.out = nrounds)
#' )
#' xgb.importance(
#' model = mbst, trees = seq(from = 3, by = nclass, length.out = nrounds)
#' model_tree_multi, trees = seq(from = 3, by = num_classes, length.out = nrounds)
#' )
#'
#' # multiclass classification using "gblinear":
#' mbst <- xgb.train(
#' data = xgb.DMatrix(
#' scale(as.matrix(iris[, -5])),
#' label = as.numeric(iris$Species) - 1
#' ),
#' nrounds = 15,
#' params = xgb.params(
#' booster = "gblinear",
#' learning_rate = 0.2,
#' nthread = 1,
#' objective = "multi:softprob",
#' num_class = nclass
#' )
#' # multi-class classification using "gblinear":
#' model_linear_multi <- xgboost(
#' x, y,
#' nrounds = 5L,
#' nthreads = 1L,
#' booster = "gblinear",
#' learning_rate = 0.2
#' )
#'
#' xgb.importance(model = mbst)
#'
#' xgb.importance(model_linear_multi)
#' @export
xgb.importance <- function(model = NULL, feature_names = getinfo(model, "feature_name"), trees = NULL) {

Expand Down
23 changes: 10 additions & 13 deletions R-package/R/xgb.plot.deepness.R
Original file line number Diff line number Diff line change
Expand Up @@ -49,27 +49,24 @@
#' data.table::setDTthreads(nthread)
#'
#' ## Change max_depth to a higher number to get a more significant result
#' bst <- xgb.train(
#' data = xgb.DMatrix(agaricus.train$data, label = agaricus.train$label),
#' model <- xgboost(
#' agaricus.train$data, factor(agaricus.train$label),
#' nrounds = 50,
#' params = xgb.params(
#' max_depth = 6,
#' nthread = nthread,
#' objective = "binary:logistic",
#' subsample = 0.5,
#' min_child_weight = 2
#' )
#' max_depth = 6,
#' nthreads = nthread,
#' subsample = 0.5,
#' min_child_weight = 2
#' )
#'
#' xgb.plot.deepness(bst)
#' xgb.ggplot.deepness(bst)
#' xgb.plot.deepness(model)
#' xgb.ggplot.deepness(model)
#'
#' xgb.plot.deepness(
#' bst, which = "max.depth", pch = 16, col = rgb(0, 0, 1, 0.3), cex = 2
#' model, which = "max.depth", pch = 16, col = rgb(0, 0, 1, 0.3), cex = 2
#' )
#'
#' xgb.plot.deepness(
#' bst, which = "med.weight", pch = 16, col = rgb(0, 0, 1, 0.3), cex = 2
#' model, which = "med.weight", pch = 16, col = rgb(0, 0, 1, 0.3), cex = 2
#' )
#'
#' @rdname xgb.plot.deepness
Expand Down
13 changes: 5 additions & 8 deletions R-package/R/xgb.plot.importance.R
Original file line number Diff line number Diff line change
Expand Up @@ -50,17 +50,14 @@
#' nthread <- 2
#' data.table::setDTthreads(nthread)
#'
#' bst <- xgb.train(
#' data = xgb.DMatrix(agaricus.train$data, label = agaricus.train$label),
#' model <- xgboost(
#' agaricus.train$data, factor(agaricus.train$label),
#' nrounds = 2,
#' params = xgb.params(
#' max_depth = 3,
#' nthread = nthread,
#' objective = "binary:logistic"
#' )
#' max_depth = 3,
#' nthreads = nthread
#' )
#'
#' importance_matrix <- xgb.importance(colnames(agaricus.train$data), model = bst)
#' importance_matrix <- xgb.importance(model)
#' xgb.plot.importance(
#' importance_matrix, rel_to_first = TRUE, xlab = "Relative importance"
#' )
Expand Down
21 changes: 9 additions & 12 deletions R-package/R/xgb.plot.multi.trees.R
Original file line number Diff line number Diff line change
Expand Up @@ -36,26 +36,23 @@
#' nthread <- 2
#' data.table::setDTthreads(nthread)
#'
#' bst <- xgb.train(
#' data = xgb.DMatrix(agaricus.train$data, label = agaricus.train$label),
#' model <- xgboost(
#' agaricus.train$data, factor(agaricus.train$label),
#' nrounds = 30,
#' verbose = 0,
#' params = xgb.params(
#' max_depth = 15,
#' learning_rate = 1,
#' nthread = nthread,
#' objective = "binary:logistic",
#' min_child_weight = 50
#' )
#' verbosity = 0L,
#' nthreads = nthread,
#' max_depth = 15,
#' learning_rate = 1,
#' min_child_weight = 50
#' )
#'
#' p <- xgb.plot.multi.trees(model = bst, features_keep = 3)
#' p <- xgb.plot.multi.trees(model, features_keep = 3)
#' print(p)
#'
#' # Below is an example of how to save this plot to a file.
#' if (require("DiagrammeR") && require("DiagrammeRsvg") && require("rsvg")) {
#' fname <- file.path(tempdir(), "tree.pdf")
#' gr <- xgb.plot.multi.trees(bst, features_keep = 3, render = FALSE)
#' gr <- xgb.plot.multi.trees(model, features_keep = 3, render = FALSE)
#' export_graph(gr, fname, width = 1500, height = 600)
#' }
#' @export
Expand Down
51 changes: 22 additions & 29 deletions R-package/R/xgb.plot.shap.R
Original file line number Diff line number Diff line change
Expand Up @@ -81,51 +81,44 @@
#' data.table::setDTthreads(nthread)
#' nrounds <- 20
#'
#' bst <- xgb.train(
#' data = xgb.DMatrix(agaricus.train$data, agaricus.train$label),
#' model_binary <- xgboost(
#' agaricus.train$data, factor(agaricus.train$label),
#' nrounds = nrounds,
#' verbose = 0,
#' params = xgb.params(
#' learning_rate = 0.1,
#' max_depth = 3,
#' subsample = 0.5,
#' objective = "binary:logistic",
#' nthread = nthread
#' )
#' verbosity = 0L,
#' learning_rate = 0.1,
#' max_depth = 3L,
#' subsample = 0.5,
#' nthreads = nthread
#' )
#'
#' xgb.plot.shap(agaricus.test$data, model = bst, features = "odor=none")
#' xgb.plot.shap(agaricus.test$data, model = model_binary, features = "odor=none")
#'
#' contr <- predict(bst, agaricus.test$data, predcontrib = TRUE)
#' xgb.plot.shap(agaricus.test$data, contr, model = bst, top_n = 12, n_col = 3)
#' contr <- predict(model_binary, agaricus.test$data, type = "contrib")
#' xgb.plot.shap(agaricus.test$data, contr, model = model_binary, top_n = 12, n_col = 3)
#'
#' # Summary plot
#' xgb.ggplot.shap.summary(agaricus.test$data, contr, model = bst, top_n = 12)
#' xgb.ggplot.shap.summary(agaricus.test$data, contr, model = model_binary, top_n = 12)
#'
#' # Multiclass example - plots for each class separately:
#' nclass <- 3
#' x <- as.matrix(iris[, -5])
#' set.seed(123)
#' is.na(x[sample(nrow(x) * 4, 30)]) <- TRUE # introduce some missing values
#'
#' mbst <- xgb.train(
#' data = xgb.DMatrix(x, label = as.numeric(iris$Species) - 1),
#' model_multiclass <- xgboost(
#' x, iris$Species,
#' nrounds = nrounds,
#' verbose = 0,
#' params = xgb.params(
#' max_depth = 2,
#' subsample = 0.5,
#' nthread = nthread,
#' objective = "multi:softprob",
#' num_class = nclass
#' )
#' verbosity = 0,
#' max_depth = 2,
#' subsample = 0.5,
#' nthreads = nthread
#' )
#' nclass <- 3
#' trees0 <- seq(from = 1, by = nclass, length.out = nrounds)
#' col <- rgb(0, 0, 1, 0.5)
#'
#' xgb.plot.shap(
#' x,
#' model = mbst,
#' model = model_multiclass,
#' trees = trees0,
#' target_class = 0,
#' top_n = 4,
Expand All @@ -137,7 +130,7 @@
#'
#' xgb.plot.shap(
#' x,
#' model = mbst,
#' model = model_multiclass,
#' trees = trees0 + 1,
#' target_class = 1,
#' top_n = 4,
Expand All @@ -149,7 +142,7 @@
#'
#' xgb.plot.shap(
#' x,
#' model = mbst,
#' model = model_multiclass,
#' trees = trees0 + 2,
#' target_class = 2,
#' top_n = 4,
Expand All @@ -160,7 +153,7 @@
#' )
#'
#' # Summary plot
#' xgb.ggplot.shap.summary(x, model = mbst, target_class = 0, top_n = 4)
#' xgb.ggplot.shap.summary(x, model = model_multiclass, target_class = 0, top_n = 4)
#'
#' @rdname xgb.plot.shap
#' @export
Expand Down
22 changes: 10 additions & 12 deletions R-package/R/xgb.plot.tree.R
Original file line number Diff line number Diff line change
Expand Up @@ -37,25 +37,23 @@
#' line.
#'
#' @examples
#' data(agaricus.train, package = "xgboost")
#'
#' bst <- xgb.train(
#' data = xgb.DMatrix(agaricus.train$data, agaricus.train$label),
#' nrounds = 2,
#' params = xgb.params(
#' max_depth = 3,
#' nthread = 2,
#' objective = "binary:logistic"
#' )
#' data("ToothGrowth")
#' x <- ToothGrowth[, c("len", "dose")]
#' y <- ToothGrowth$supp
#' model <- xgboost(
#' x, y,
#' nthreads = 1L,
#' nrounds = 3L,
#' max_depth = 3L
#' )
#'
#' # plot the first tree
#' xgb.plot.tree(model = bst, tree_idx = 1)
#' xgb.plot.tree(model, tree_idx = 1)
#'
#' # Below is an example of how to save this plot to a file.
#' if (require("DiagrammeR") && require("htmlwidgets")) {
#' fname <- file.path(tempdir(), "plot.html'")
#' gr <- xgb.plot.tree(bst, tree_idx = 1)
#' gr <- xgb.plot.tree(model, tree_idx = 1)
#' htmlwidgets::saveWidget(gr, fname)
#' }
#' @export
Expand Down
Loading
Loading