Skip to content

Graph Attention Networks for Entity Summarization is the model that applies deep learning on graphs and ensemble learning on entity summarization tasks.

License

Notifications You must be signed in to change notification settings

dice-group/GATES

Repository files navigation

GATES: Using Graph Attention Networks for Entity Summarization

This repository contains the implementation and dataset of our paper GATES: Using Graph Attention Networks for Entity Summarization.

## Dataset

On this experiment, we used two datasets:

  1. ESBM (version 1.2) that consists of 175 entities related to 150 entities from DBpedia and 25 entities from LinkedMDB.
  2. FACES dataset.

Pre-trained Knowledge Graph Embedding Models

GATES implements knowledge graph embedding and also provides pre-trained model for each model on ESBM benchmark dataset as follows:

  • ComplEx
  • ConEx
  • DistMult

Pre-trained Word Embedding Models

GATES applies Glove and fastText as word embeddings.

Glove

  1. Download pre-trained model glove.6B.zip
  2. Extract the zip file in data folder

fastText

  1. Download pre-trained model wiki-news-300d-1M.vec.zip
  2. Extract the zip file and put the file on data folder

Environment and Dependency

Environment

  • Ubuntu 10.04.2 LTS
  • python 3.6+
  • pytorch 1.7.0

Dependencies

Our dependencies from external library that are required to run the model, you need to install them as follow:

conda create -n dice-gates python=3.6
conda activate dice-gates
pip install scipy==1.5.4
pip install numpy==1.19.2
pip install gensim==3.8.3
pip install nltk==3.5
pip install torch==1.7.0
pip install psutil==5.8.0
pip install SPARQLWrapper==1.8.5
pip install matplotlib==3.3.4
pip install rdflib==4.2.1
pip install tqdm

or

pip install -r requirements.txt

Installation

git clone https://github.com/dice-group/GATES.git

Usage

usage: main.py [-h] [--mode MODE] [--kge_model KGE_MODEL]
               [--loss_function LOSS_FUNCTION] [--ent_emb_dim ENT_EMB_DIM]
               [--pred_emb_dim PRED_EMB_DIM] [--hidden_layers HIDDEN_LAYERS]
               [--nheads NHEADS] [--lr LR] [--dropout DROPOUT]
               [--weight_decay WEIGHT_DECAY] [--regularization REGULARIZATION]
               [--save_every SAVE_EVERY] [--n_epoch N_EPOCH]
               [--word_emb_model WORD_EMB_MODEL]
               [--word_emb_calc WORD_EMB_CALC]
               [--use_epoch USE_EPOCH [USE_EPOCH ...]]
               [--concat_model CONCAT_MODEL]
               [--weighted_edges_method WEIGHTED_EDGES_METHOD]

GATES: Graph Attention Network for Entity Summarization

optional arguments:
  -h, --help            show this help message and exit
  --mode MODE           use which mode type: train/test/all
  --kge_model KGE_MODEL
                        use ComplEx/DistMult/ConEx
  --loss_function LOSS_FUNCTION
                        use which loss type: BCE/MSE
  --ent_emb_dim ENT_EMB_DIM
                        the embeddiing dimension of entity
  --pred_emb_dim PRED_EMB_DIM
                        the embeddiing dimension of predicate
  --hidden_layers HIDDEN_LAYERS
                        the number of hidden layers
  --nheads NHEADS       the number of heads attention
  --lr LR               use to define learning rate hyperparameter
  --dropout DROPOUT     use to define dropout hyperparameter
  --weight_decay WEIGHT_DECAY
                        use to define weight decay hyperparameter if the
                        regularization set to True
  --regularization REGULARIZATION
                        use to define regularization: True/False
  --save_every SAVE_EVERY
                        save model in every n epochs
  --n_epoch N_EPOCH     train model in total n epochs
  --word_emb_model WORD_EMB_MODEL
                        use which word embedding model: fasttext/Glove
  --word_emb_calc WORD_EMB_CALC
                        use which method to compute textual form: SUM/AVG
  --use_epoch USE_EPOCH [USE_EPOCH ...]
                        how many epochs to train the model
  --concat_model CONCAT_MODEL
                        use which concatenation model (1 or 2). In which, 1
                        refers to KGE + Word embedding, and 2 refers to KGE +
                        (KGE/Word embeddings) depends on the object value
  --weighted_edges_method WEIGHTED_EDGES_METHOD
                        use which apply the initialize weighted edges method:
                        tf-idf

Training the model

python main.py --mode train --weighted_edges_method tf-idf

Testing the model

python main.py --mode test --weighted_edges_method tf-idf

Evaluation Result

Evaluation Method: F-Measure

Model DBpedia LMDB FACES
K=5 K=10 K=5 K=10 K=5 K=10
ESA 0,332 0,532 0,353 0,435 0,153 0,261
AutoSUM 0,372 0,555 0,430 0,520 0,241 0,316
DeepLENS 0,404 0,575 0,469 0,489 0,130 0,248
GATES 0,423 0,574 0,437 0,535 0,254 0.324

Contact

If you have any feedback or suggestions, feel free to send me an email to [email protected]

Cite

@inproceedings{DBLP:conf/kcap/FirmansyahMN21,
  author    = {Asep Fajar Firmansyah and
               Diego Moussallem and
               Axel{-}Cyrille Ngonga Ngomo},
  editor    = {Anna Lisa Gentile and
               Rafael Gon{\c{c}}alves},
  title     = {{GATES:} Using Graph Attention Networks for Entity Summarization},
  booktitle = {{K-CAP} '21: Knowledge Capture Conference, Virtual Event, USA, December
               2-3, 2021},
  pages     = {73--80},
  publisher = {{ACM}},
  year      = {2021},
  url       = {https://doi.org/10.1145/3460210.3493574},
  doi       = {10.1145/3460210.3493574},
  timestamp = {Thu, 25 Nov 2021 10:29:00 +0100},
  biburl    = {https://dblp.org/rec/conf/kcap/FirmansyahMN21.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Contact

If you have any questions or feedbacks, feel free to contact us at [email protected]

About

Graph Attention Networks for Entity Summarization is the model that applies deep learning on graphs and ensemble learning on entity summarization tasks.

Topics

Resources

License

Stars

Watchers

Forks

Languages