Skip to content
/ CIDER Public

❗ This is a read-only mirror of the CRAN R package repository. CIDER — Meta-Clustering for scRNA-Seq Integration and Evaluation. Homepage: https://github.com/zhiyuan-hu-lab/CIDERhttps://zhiyuan-hu-lab.github.io/CIDER/ Report bugs for this package: https://github.com/zhiyuan-hu-lab/CIDER/issues

License

Notifications You must be signed in to change notification settings

cran/CIDER

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CIDER

CIDER is a meta-clustering workflow designed to handle scRNA-seq data that span multiple samples or conditions. Often, these datasets are confounded by batch effects or other variables. Many existing batch-removal methods assume near-identical cell population compositions across samples. CIDER, in contrast, leverages inter-group similarity measures to guide clustering without requiring such strict assumptions.

Highlights

  • Clustering: Overcome confounders in scRNA-seq data (e.g., batch effects) without requiring identical cell-type composition.
  • Evaluation metric: Assess whether integrated data from methods like Seurat-CCA, Harmony, or Scanorama preserve meaningful biological structure—no prior cell-type labels required.

Installation

You can install CIDER from github with:

# install.packages("devtools")
devtools::install_github('zhiyuan-hu-lab/CIDER')

Quick Start: Using CIDER as an Evaluation Metric

If you have already integrated your scRNA-seq data (e.g., using Seurat-CCA, Harmony, or Scanorama) and want to evaluate how well the biological populations align post-integration, you can use CIDER as follows.

  1. Before running CIDER evaluation functions, make sure that you have a Seurat object (e.g. seu.integrated) with corrected PCs in
seu.integrated@reductions$pca@cell.embeddings`
  • Seurat-CCA automatically put the corrected PCs there.
  • If other methods are used, the corrected PCs can be added using
seu.integrated@reductions$pca@cell.embeddings <- corrected.PCs
  1. Run hdbscan clustering (optional) and compute the IDER score:
library(CIDER)
seu.integrated <- hdbscan.seurat(seu.integrated)
ider <- getIDEr(seu.integrated, verbose = FALSE)
seu.integrated <- estimateProb(seu.integrated, ider)
  1. Visualize evaluation scores on t-SNE or UMAP:

The evaluation scores (IDER-based similarity and empirical p values) can be visualised by the scatterPlot function.

p1 <- scatterPlot(seu.integrated, "tsne", colour.by = "similarity")
p2 <- scatterPlot(seu.integrated, "tsne", colour.by = "pvalue") 
plot_grid(p1,p2, ncol = 2)

Evaluation scatterplot showing CIDER-based p-values and similarity

Evaluation scatterplot showing CIDER-based p-values and similarity

For a more detailed walkthrough, see the detailed tutorial of evaluation

Using CIDER for Clustering Tasks

In many scenarios, you do not start with an integrated Seurat object but still need to cluster multi-batch scRNA-seq data in a robust way. CIDER provides meta-clustering approaches:

  • asCIDER: When you have initial batch-specific clusters.
  • dnCIDER: When you do not have any initial cluster labels.

Quick Start with asCIDER

If your Seurat object (seu) has:

  • initial_cluster in [email protected] for per-batch clusters, and
  • Batch for batch labels,

then two main steps are:

# Step 1: Compute IDER-based similarity
ider <- getIDEr(seu, 
                group.by.var = "initial_cluster",
                batch.by.var = "Batch")

# Step 2: Perform final clustering
seu <- finalClustering(seu, ider, cutree.h = 0.45)

The final clusters will be stored in [email protected]$final_cluster (by default).

Citation

If you find CIDER helpful for your research, please cite:

Z. Hu, A. A. Ahmed, C. Yau. CIDER: an interpretable meta-clustering framework for single-cell RNA-seq data integration and evaluation. Genome Biology 22, Article number: 337 (2021); doi: https://doi.org/10.1186/s13059-021-02561-2

Z. Hu, M. Artibani, A. Alsaadi, N. Wietek, M. Morotti, T. Shi, Z. Zhong, L. Santana Gonzalez, S. El-Sahhar, M. KaramiNejadRanjbar, G. Mallett, Y. Feng, K. Masuda, Y. Zheng, K. Chong, S. Damato, S. Dhar, L. Campo, R. Garruto Campanile, V. Rai, D. Maldonado-Perez, S. Jones, V. Cerundolo, T. Sauka-Spengler, C. Yau*, A. A. Ahmed*. The repertoire of serous ovarian cancer non-genetic heterogeneity revealed by single-cell sequencing of normal fallopian tube epithelial cells. Cancer Cell 37 (2), p226-242.E7 (2020). doi: https://doi.org/10.1101/2021.03.29.437525

About

❗ This is a read-only mirror of the CRAN R package repository. CIDER — Meta-Clustering for scRNA-Seq Integration and Evaluation. Homepage: https://github.com/zhiyuan-hu-lab/CIDERhttps://zhiyuan-hu-lab.github.io/CIDER/ Report bugs for this package: https://github.com/zhiyuan-hu-lab/CIDER/issues

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages