Skip to content

confirm each step #30

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 2 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
130 changes: 130 additions & 0 deletions aisdk_client.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
/******************************************************************************
* YOU PROBABLY DON'T WANT TO BE USING THIS FILE DIRECTLY *
* INSTEAD, EDIT `stagehand.config.ts` TO MODIFY THE CLIENT CONFIGURATION *
******************************************************************************/

/**
* Welcome to the Stagehand Vercel AI SDK client!
*
* This is a client for OpenAI using Vercel AI SDK
* that allows you to create chat completions with Vercel AI SDK.
*
* To use this client, you need to have Vercel AI SDK installed and the appropriate environment variables set.
*
* ```bash
* npm install @vercel/ai
* ```
*/

import {
CoreAssistantMessage,
CoreMessage,
CoreSystemMessage,
CoreTool,
CoreUserMessage,
generateObject,
generateText,
ImagePart,
LanguageModel,
TextPart,
} from "ai";
import { ChatCompletion } from "openai/resources/chat/completions";
import {
CreateChatCompletionOptions,
LLMClient,
AvailableModel,
} from "@browserbasehq/stagehand";

export class AISdkClient extends LLMClient {
public type = "aisdk" as const;
private model: LanguageModel;

constructor({ model }: { model: LanguageModel }) {
super(model.modelId as AvailableModel);
this.model = model;
}

async createChatCompletion<T = ChatCompletion>({
options,
}: CreateChatCompletionOptions): Promise<T> {
const formattedMessages: CoreMessage[] = options.messages.map((message) => {
if (Array.isArray(message.content)) {
if (message.role === "system") {
const systemMessage: CoreSystemMessage = {
role: "system",
content: message.content
.map((c) => ("text" in c ? c.text : ""))
.join("\n"),
};
return systemMessage;
}

const contentParts = message.content.map((content) => {
if ("image_url" in content) {
const imageContent: ImagePart = {
type: "image",
image: content.image_url.url,
};
return imageContent;
} else {
const textContent: TextPart = {
type: "text",
text: content.text,
};
return textContent;
}
});

if (message.role === "user") {
const userMessage: CoreUserMessage = {
role: "user",
content: contentParts,
};
return userMessage;
} else {
const textOnlyParts = contentParts.map((part) => ({
type: "text" as const,
text: part.type === "image" ? "[Image]" : part.text,
}));
const assistantMessage: CoreAssistantMessage = {
role: "assistant",
content: textOnlyParts,
};
return assistantMessage;
}
}

return {
role: message.role,
content: message.content,
};
});

if (options.response_model) {
const response = await generateObject({
model: this.model,
messages: formattedMessages,
schema: options.response_model.schema,
});

return response.object;
}

const tools: Record<string, CoreTool> = {};

for (const rawTool of options.tools || []) {
tools[rawTool.name] = {
description: rawTool.description,
parameters: rawTool.parameters,
};
}

const response = await generateText({
model: this.model,
messages: formattedMessages,
tools,
});

return response as T;
}
}
Loading