|
| 1 | +# |
| 2 | +# Licensed to the Apache Software Foundation (ASF) under one |
| 3 | +# or more contributor license agreements. See the NOTICE file |
| 4 | +# distributed with this work for additional information |
| 5 | +# regarding copyright ownership. The ASF licenses this file |
| 6 | +# to you under the Apache License, Version 2.0 (the |
| 7 | +# "License"); you may not use this file except in compliance |
| 8 | +# with the License. You may obtain a copy of the License at |
| 9 | +# |
| 10 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 11 | +# |
| 12 | +# Unless required by applicable law or agreed to in writing, software |
| 13 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 14 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 15 | +# See the License for the specific language governing permissions and |
| 16 | +# limitations under the License. |
| 17 | +# |
| 18 | + |
| 19 | +try: |
| 20 | + import pickle |
| 21 | +except ImportError: |
| 22 | + import cPickle as pickle |
| 23 | + |
| 24 | +import os |
| 25 | +import sys |
| 26 | +import random |
| 27 | +import numpy as np |
| 28 | +from PIL import Image |
| 29 | + |
| 30 | + |
| 31 | +# need to save to specific local directories |
| 32 | +def load_data(dir_path="/tmp/diaret", resize_size=(128, 128)): |
| 33 | + dir_path = check_dataset_exist(dirpath=dir_path) |
| 34 | + image_sets = {label: load_image_path(os.listdir(os.path.join(dir_path, label))) |
| 35 | + for label in os.listdir(dir_path)} |
| 36 | + images, labels = [], [] |
| 37 | + for label in os.listdir(dir_path): |
| 38 | + image_names = load_image_path(os.listdir(os.path.join(dir_path, label))) |
| 39 | + label_images = [np.array(Image.open(os.path.join(dir_path, label, img_name))\ |
| 40 | + .resize(resize_size).convert("RGB")).transpose(2, 0, 1) |
| 41 | + for img_name in image_names] |
| 42 | + images.extend(label_images) |
| 43 | + labels.extend([int(label)] * len(label_images)) |
| 44 | + |
| 45 | + images = np.array(images, dtype=np.float32) |
| 46 | + labels = np.array(labels, dtype=np.int32) |
| 47 | + return images, labels |
| 48 | + |
| 49 | + |
| 50 | +def load_image_path(image_pths): |
| 51 | + allowed_image_format = ['png', 'jpg', 'jpeg'] |
| 52 | + return list(filter(lambda pth: pth.rsplit('.')[-1].lower() in allowed_image_format, |
| 53 | + image_pths)) |
| 54 | + |
| 55 | + |
| 56 | +def check_dataset_exist(dirpath): |
| 57 | + if not os.path.exists(dirpath): |
| 58 | + print( |
| 59 | + 'Please download the Diabetic Retinopathy dataset first' |
| 60 | + ) |
| 61 | + sys.exit(0) |
| 62 | + return dirpath |
| 63 | + |
| 64 | + |
| 65 | +def normalize(train_x, val_x): |
| 66 | + mean = [0.5339, 0.4180, 0.4460] # mean for dataset |
| 67 | + std = [0.3329, 0.2637, 0.2761] # std for dataset |
| 68 | + train_x /= 255 |
| 69 | + val_x /= 255 |
| 70 | + for ch in range(0, 2): |
| 71 | + train_x[:, ch, :, :] -= mean[ch] |
| 72 | + train_x[:, ch, :, :] /= std[ch] |
| 73 | + val_x[:, ch, :, :] -= mean[ch] |
| 74 | + val_x[:, ch, :, :] /= std[ch] |
| 75 | + return train_x, val_x |
| 76 | + |
| 77 | + |
| 78 | +def train_test_split(x, y, val_ratio=0.2): |
| 79 | + indices = list(range(len(x))) |
| 80 | + val_indices = list(random.sample(indices, int(val_ratio*len(x)))) |
| 81 | + train_indices = list(set(indices) - set(val_indices)) |
| 82 | + return x[train_indices], y[train_indices], x[val_indices], y[val_indices] |
| 83 | + |
| 84 | + |
| 85 | +def load(dir_path): |
| 86 | + x, y = load_data(dir_path=dir_path) |
| 87 | + train_x, train_y, val_x, val_y = train_test_split(x, y) |
| 88 | + train_x, val_x = normalize(train_x, val_x) |
| 89 | + return train_x, train_y, val_x, val_y |
0 commit comments