-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add histogram facet capabilities. (#14204)
This is inspired from a paper by Tencent where the authors describe how they speed up so-called "histogram queries" by sorting the index by timestamp translating ranges of values corresponding to each histogram bucket to ranges of doc IDs. This way, at collection time, they no longer need to look up values and can compute the histogram purely by looking at collected doc IDs. YU, Muzhi, LIN, Zhaoxiang, SUN, Jinan, et al. TencentCLS: the cloud log service with high query performances. Proceedings of the VLDB Endowment, 2022, vol. 15, no 12, p. 3472-3482. Instead of binary-searching the doc ID space to translate histogram buckets into ranges of doc IDs, the new collector manager uses recently introduced support for sparse indexing. When playing with the geonames dataset, computing a histogram of the elevation field runs ~2-3x faster with this optimization than with the naive implementation.
- Loading branch information
Showing
7 changed files
with
561 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
274 changes: 274 additions & 0 deletions
274
...sandbox/src/java/org/apache/lucene/sandbox/facet/plain/histograms/HistogramCollector.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,274 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
package org.apache.lucene.sandbox.facet.plain.histograms; | ||
|
||
import java.io.IOException; | ||
import org.apache.lucene.index.DocValues; | ||
import org.apache.lucene.index.DocValuesSkipper; | ||
import org.apache.lucene.index.DocValuesType; | ||
import org.apache.lucene.index.FieldInfo; | ||
import org.apache.lucene.index.LeafReaderContext; | ||
import org.apache.lucene.index.NumericDocValues; | ||
import org.apache.lucene.index.SortedNumericDocValues; | ||
import org.apache.lucene.internal.hppc.LongIntHashMap; | ||
import org.apache.lucene.search.CollectionTerminatedException; | ||
import org.apache.lucene.search.Collector; | ||
import org.apache.lucene.search.LeafCollector; | ||
import org.apache.lucene.search.Scorable; | ||
import org.apache.lucene.search.ScoreMode; | ||
|
||
final class HistogramCollector implements Collector { | ||
|
||
private final String field; | ||
private final long bucketWidth; | ||
private final int maxBuckets; | ||
private final LongIntHashMap counts; | ||
|
||
HistogramCollector(String field, long bucketWidth, int maxBuckets) { | ||
this.field = field; | ||
this.bucketWidth = bucketWidth; | ||
this.maxBuckets = maxBuckets; | ||
this.counts = new LongIntHashMap(); | ||
} | ||
|
||
@Override | ||
public LeafCollector getLeafCollector(LeafReaderContext context) throws IOException { | ||
FieldInfo fi = context.reader().getFieldInfos().fieldInfo(field); | ||
if (fi == null) { | ||
// The segment has no values, nothing to do. | ||
throw new CollectionTerminatedException(); | ||
} | ||
if (fi.getDocValuesType() != DocValuesType.NUMERIC | ||
&& fi.getDocValuesType() != DocValuesType.SORTED_NUMERIC) { | ||
throw new IllegalStateException( | ||
"Expected numeric field, but got doc-value type: " + fi.getDocValuesType()); | ||
} | ||
SortedNumericDocValues values = DocValues.getSortedNumeric(context.reader(), field); | ||
NumericDocValues singleton = DocValues.unwrapSingleton(values); | ||
if (singleton == null) { | ||
return new HistogramNaiveLeafCollector(values, bucketWidth, maxBuckets, counts); | ||
} else { | ||
DocValuesSkipper skipper = context.reader().getDocValuesSkipper(field); | ||
if (skipper != null) { | ||
long leafMinBucket = Math.floorDiv(skipper.minValue(), bucketWidth); | ||
long leafMaxBucket = Math.floorDiv(skipper.maxValue(), bucketWidth); | ||
if (leafMaxBucket - leafMinBucket <= 1024) { | ||
// Only use the optimized implementation if there is a small number of unique buckets, | ||
// so that we can count them using a dense array instead of a hash table. This helps save | ||
// the overhead of hashing and collision resolution. | ||
return new HistogramLeafCollector(singleton, skipper, bucketWidth, maxBuckets, counts); | ||
} | ||
} | ||
return new HistogramNaiveSingleValuedLeafCollector( | ||
singleton, bucketWidth, maxBuckets, counts); | ||
} | ||
} | ||
|
||
@Override | ||
public ScoreMode scoreMode() { | ||
return ScoreMode.COMPLETE_NO_SCORES; | ||
} | ||
|
||
LongIntHashMap getCounts() { | ||
return counts; | ||
} | ||
|
||
/** | ||
* Naive implementation of a histogram {@link LeafCollector}, which iterates all maches and looks | ||
* up the value to determine the corresponding bucket. | ||
*/ | ||
private static class HistogramNaiveLeafCollector implements LeafCollector { | ||
|
||
private final SortedNumericDocValues values; | ||
private final long bucketWidth; | ||
private final int maxBuckets; | ||
private final LongIntHashMap counts; | ||
|
||
HistogramNaiveLeafCollector( | ||
SortedNumericDocValues values, long bucketWidth, int maxBuckets, LongIntHashMap counts) { | ||
this.values = values; | ||
this.bucketWidth = bucketWidth; | ||
this.maxBuckets = maxBuckets; | ||
this.counts = counts; | ||
} | ||
|
||
@Override | ||
public void setScorer(Scorable scorer) throws IOException {} | ||
|
||
@Override | ||
public void collect(int doc) throws IOException { | ||
if (values.advanceExact(doc)) { | ||
int valueCount = values.docValueCount(); | ||
long prevBucket = Long.MIN_VALUE; | ||
for (int i = 0; i < valueCount; ++i) { | ||
final long value = values.nextValue(); | ||
final long bucket = Math.floorDiv(value, bucketWidth); | ||
// We must not double-count values that map to the same bucket since this returns doc | ||
// counts as opposed to value counts. | ||
if (bucket != prevBucket) { | ||
counts.addTo(bucket, 1); | ||
checkMaxBuckets(counts.size(), maxBuckets); | ||
prevBucket = bucket; | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
/** | ||
* Naive implementation of a histogram {@link LeafCollector}, which iterates all maches and looks | ||
* up the value to determine the corresponding bucket. | ||
*/ | ||
private static class HistogramNaiveSingleValuedLeafCollector implements LeafCollector { | ||
|
||
private final NumericDocValues values; | ||
private final long bucketWidth; | ||
private final int maxBuckets; | ||
private final LongIntHashMap counts; | ||
|
||
HistogramNaiveSingleValuedLeafCollector( | ||
NumericDocValues values, long bucketWidth, int maxBuckets, LongIntHashMap counts) { | ||
this.values = values; | ||
this.bucketWidth = bucketWidth; | ||
this.maxBuckets = maxBuckets; | ||
this.counts = counts; | ||
} | ||
|
||
@Override | ||
public void setScorer(Scorable scorer) throws IOException {} | ||
|
||
@Override | ||
public void collect(int doc) throws IOException { | ||
if (values.advanceExact(doc)) { | ||
final long value = values.longValue(); | ||
final long bucket = Math.floorDiv(value, bucketWidth); | ||
counts.addTo(bucket, 1); | ||
checkMaxBuckets(counts.size(), maxBuckets); | ||
} | ||
} | ||
} | ||
|
||
/** | ||
* Optimized histogram {@link LeafCollector}, that takes advantage of the doc-values index to | ||
* speed up collection. | ||
*/ | ||
private static class HistogramLeafCollector implements LeafCollector { | ||
|
||
private final NumericDocValues values; | ||
private final DocValuesSkipper skipper; | ||
private final long bucketWidth; | ||
private final int maxBuckets; | ||
private final int[] counts; | ||
private final long leafMinBucket; | ||
private final LongIntHashMap collectorCounts; | ||
|
||
/** Max doc ID (inclusive) up to which all docs values may map to the same bucket. */ | ||
private int upToInclusive = -1; | ||
|
||
/** Whether all docs up to {@link #upToInclusive} values map to the same bucket. */ | ||
private boolean upToSameBucket; | ||
|
||
/** Index in {@link #counts} for docs up to {@link #upToInclusive}. */ | ||
private int upToBucketIndex; | ||
|
||
HistogramLeafCollector( | ||
NumericDocValues values, | ||
DocValuesSkipper skipper, | ||
long bucketWidth, | ||
int maxBuckets, | ||
LongIntHashMap collectorCounts) { | ||
this.values = values; | ||
this.skipper = skipper; | ||
this.bucketWidth = bucketWidth; | ||
this.maxBuckets = maxBuckets; | ||
this.collectorCounts = collectorCounts; | ||
|
||
leafMinBucket = Math.floorDiv(skipper.minValue(), bucketWidth); | ||
long leafMaxBucket = Math.floorDiv(skipper.maxValue(), bucketWidth); | ||
counts = new int[Math.toIntExact(leafMaxBucket - leafMinBucket + 1)]; | ||
} | ||
|
||
@Override | ||
public void setScorer(Scorable scorer) throws IOException {} | ||
|
||
private void advanceSkipper(int doc) throws IOException { | ||
if (doc > skipper.maxDocID(0)) { | ||
skipper.advance(doc); | ||
} | ||
upToSameBucket = false; | ||
|
||
if (skipper.minDocID(0) > doc) { | ||
// Corner case which happens if `doc` doesn't have a value and is between two intervals of | ||
// the doc-value skip index. | ||
upToInclusive = skipper.minDocID(0) - 1; | ||
return; | ||
} | ||
|
||
upToInclusive = skipper.maxDocID(0); | ||
|
||
// Now find the highest level where all docs map to the same bucket. | ||
for (int level = 0; level < skipper.numLevels(); ++level) { | ||
int totalDocsAtLevel = skipper.maxDocID(level) - skipper.minDocID(level) + 1; | ||
long minBucket = Math.floorDiv(skipper.minValue(level), bucketWidth); | ||
long maxBucket = Math.floorDiv(skipper.maxValue(level), bucketWidth); | ||
|
||
if (skipper.docCount(level) == totalDocsAtLevel && minBucket == maxBucket) { | ||
// All docs at this level have a value, and all values map to the same bucket. | ||
upToInclusive = skipper.maxDocID(level); | ||
upToSameBucket = true; | ||
upToBucketIndex = (int) (minBucket - this.leafMinBucket); | ||
} else { | ||
break; | ||
} | ||
} | ||
} | ||
|
||
@Override | ||
public void collect(int doc) throws IOException { | ||
if (doc > upToInclusive) { | ||
advanceSkipper(doc); | ||
} | ||
|
||
if (upToSameBucket) { | ||
counts[upToBucketIndex]++; | ||
} else if (values.advanceExact(doc)) { | ||
final long value = values.longValue(); | ||
final long bucket = Math.floorDiv(value, bucketWidth); | ||
counts[(int) (bucket - leafMinBucket)]++; | ||
} | ||
} | ||
|
||
@Override | ||
public void finish() throws IOException { | ||
// Put counts that we computed in the int[] back into the hash map. | ||
for (int i = 0; i < counts.length; ++i) { | ||
collectorCounts.addTo(leafMinBucket + i, counts[i]); | ||
} | ||
checkMaxBuckets(collectorCounts.size(), maxBuckets); | ||
} | ||
} | ||
|
||
private static void checkMaxBuckets(int size, int maxBuckets) { | ||
if (size > maxBuckets) { | ||
throw new IllegalStateException( | ||
"Collected " | ||
+ size | ||
+ " buckets, which is more than the configured max number of buckets: " | ||
+ maxBuckets); | ||
} | ||
} | ||
} |
96 changes: 96 additions & 0 deletions
96
.../src/java/org/apache/lucene/sandbox/facet/plain/histograms/HistogramCollectorManager.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
package org.apache.lucene.sandbox.facet.plain.histograms; | ||
|
||
import java.io.IOException; | ||
import java.util.Collection; | ||
import java.util.Objects; | ||
import org.apache.lucene.document.FieldType; | ||
import org.apache.lucene.internal.hppc.LongIntHashMap; | ||
import org.apache.lucene.internal.hppc.LongIntHashMap.LongIntCursor; | ||
import org.apache.lucene.search.CollectorManager; | ||
|
||
/** | ||
* {@link CollectorManager} that computes a histogram of the distribution of the values of a field. | ||
* | ||
* <p>It takes an {@code bucketWidth} as a parameter and counts the number of documents that fall | ||
* into intervals [0, bucketWidth), [bucketWidth, 2*bucketWidth), etc. The keys of the returned | ||
* {@link LongIntHashMap} identify these intervals as the quotient of the integer division by {@code | ||
* bucketWidth}. Said otherwise, a key equal to {@code k} maps to values in the interval {@code [k * | ||
* bucketWidth, (k+1) * bucketWidth)}. | ||
* | ||
* <p>This implementation is optimized for the case when {@code field} is part of the index sort and | ||
* has a {@link FieldType#setDocValuesSkipIndexType skip index}. | ||
* | ||
* <p>Note: this collector is inspired from "YU, Muzhi, LIN, Zhaoxiang, SUN, Jinan, et al. | ||
* TencentCLS: the cloud log service with high query performances. Proceedings of the VLDB | ||
* Endowment, 2022, vol. 15, no 12, p. 3472-3482.", where the authors describe how they run | ||
* "histogram queries" by sorting the index by timestamp and pre-computing ranges of doc IDs for | ||
* every possible bucket. | ||
*/ | ||
public final class HistogramCollectorManager | ||
implements CollectorManager<HistogramCollector, LongIntHashMap> { | ||
|
||
private static final int DEFAULT_MAX_BUCKETS = 1024; | ||
|
||
private final String field; | ||
private final long bucketWidth; | ||
private final int maxBuckets; | ||
|
||
/** | ||
* Compute a histogram of the distribution of the values of the given {@code field} according to | ||
* the given {@code bucketWidth}. This configures a maximum number of buckets equal to the default | ||
* of 1024. | ||
*/ | ||
public HistogramCollectorManager(String field, long bucketWidth) { | ||
this(field, bucketWidth, DEFAULT_MAX_BUCKETS); | ||
} | ||
|
||
/** | ||
* Expert constructor. | ||
* | ||
* @param maxBuckets Max allowed number of buckets. Note that this is checked at runtime and on a | ||
* best-effort basis. | ||
*/ | ||
public HistogramCollectorManager(String field, long bucketWidth, int maxBuckets) { | ||
this.field = Objects.requireNonNull(field); | ||
if (bucketWidth < 2) { | ||
throw new IllegalArgumentException("bucketWidth must be at least 2, got: " + bucketWidth); | ||
} | ||
this.bucketWidth = bucketWidth; | ||
if (maxBuckets < 1) { | ||
throw new IllegalArgumentException("maxBuckets must be at least 1, got: " + maxBuckets); | ||
} | ||
this.maxBuckets = maxBuckets; | ||
} | ||
|
||
@Override | ||
public HistogramCollector newCollector() throws IOException { | ||
return new HistogramCollector(field, bucketWidth, maxBuckets); | ||
} | ||
|
||
@Override | ||
public LongIntHashMap reduce(Collection<HistogramCollector> collectors) throws IOException { | ||
LongIntHashMap reduced = new LongIntHashMap(); | ||
for (HistogramCollector collector : collectors) { | ||
for (LongIntCursor cursor : collector.getCounts()) { | ||
reduced.addTo(cursor.key, cursor.value); | ||
} | ||
} | ||
return reduced; | ||
} | ||
} |
Oops, something went wrong.