Skip to content

Commit

Permalink
Add histogram facet capabilities. (#14204)
Browse files Browse the repository at this point in the history
This is inspired from a paper by Tencent where the authors describe how they
speed up so-called "histogram queries" by sorting the index by timestamp
translating ranges of values corresponding to each histogram bucket to ranges
of doc IDs. This way, at collection time, they no longer need to look up values
and can compute the histogram purely by looking at collected doc IDs.

YU, Muzhi, LIN, Zhaoxiang, SUN, Jinan, et al. TencentCLS: the cloud log service
with high query performances. Proceedings of the VLDB Endowment, 2022, vol. 15,
no 12, p. 3472-3482.

Instead of binary-searching the doc ID space to translate histogram buckets
into ranges of doc IDs, the new collector manager uses recently introduced
support for sparse indexing. When playing with the geonames dataset, computing
a histogram of the elevation field runs ~2-3x faster with this optimization
than with the naive implementation.
  • Loading branch information
jpountz authored Feb 21, 2025
1 parent 2707970 commit 2d422af
Show file tree
Hide file tree
Showing 7 changed files with 561 additions and 0 deletions.
4 changes: 4 additions & 0 deletions lucene/CHANGES.txt
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,10 @@ New Features

* GITHUB#13974: Introducing DocValuesMultiRangeQuery.SortedSetStabbingBuilder into sandbox. (Mikhail Khludnev)

* GITHUB#14204: Added HistogramCollectorManager to efficiently compute a
histogram of the distribution of the values of a field, for documents
matching a given query. (Adrien Grand)

Improvements
---------------------

Expand Down
1 change: 1 addition & 0 deletions lucene/sandbox/src/java/module-info.java
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@
exports org.apache.lucene.sandbox.facet.iterators;
exports org.apache.lucene.sandbox.facet.cutters;
exports org.apache.lucene.sandbox.facet.labels;
exports org.apache.lucene.sandbox.facet.plain.histograms;

provides org.apache.lucene.codecs.PostingsFormat with
org.apache.lucene.sandbox.codecs.idversion.IDVersionPostingsFormat;
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,274 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.sandbox.facet.plain.histograms;

import java.io.IOException;
import org.apache.lucene.index.DocValues;
import org.apache.lucene.index.DocValuesSkipper;
import org.apache.lucene.index.DocValuesType;
import org.apache.lucene.index.FieldInfo;
import org.apache.lucene.index.LeafReaderContext;
import org.apache.lucene.index.NumericDocValues;
import org.apache.lucene.index.SortedNumericDocValues;
import org.apache.lucene.internal.hppc.LongIntHashMap;
import org.apache.lucene.search.CollectionTerminatedException;
import org.apache.lucene.search.Collector;
import org.apache.lucene.search.LeafCollector;
import org.apache.lucene.search.Scorable;
import org.apache.lucene.search.ScoreMode;

final class HistogramCollector implements Collector {

private final String field;
private final long bucketWidth;
private final int maxBuckets;
private final LongIntHashMap counts;

HistogramCollector(String field, long bucketWidth, int maxBuckets) {
this.field = field;
this.bucketWidth = bucketWidth;
this.maxBuckets = maxBuckets;
this.counts = new LongIntHashMap();
}

@Override
public LeafCollector getLeafCollector(LeafReaderContext context) throws IOException {
FieldInfo fi = context.reader().getFieldInfos().fieldInfo(field);
if (fi == null) {
// The segment has no values, nothing to do.
throw new CollectionTerminatedException();
}
if (fi.getDocValuesType() != DocValuesType.NUMERIC
&& fi.getDocValuesType() != DocValuesType.SORTED_NUMERIC) {
throw new IllegalStateException(
"Expected numeric field, but got doc-value type: " + fi.getDocValuesType());
}
SortedNumericDocValues values = DocValues.getSortedNumeric(context.reader(), field);
NumericDocValues singleton = DocValues.unwrapSingleton(values);
if (singleton == null) {
return new HistogramNaiveLeafCollector(values, bucketWidth, maxBuckets, counts);
} else {
DocValuesSkipper skipper = context.reader().getDocValuesSkipper(field);
if (skipper != null) {
long leafMinBucket = Math.floorDiv(skipper.minValue(), bucketWidth);
long leafMaxBucket = Math.floorDiv(skipper.maxValue(), bucketWidth);
if (leafMaxBucket - leafMinBucket <= 1024) {
// Only use the optimized implementation if there is a small number of unique buckets,
// so that we can count them using a dense array instead of a hash table. This helps save
// the overhead of hashing and collision resolution.
return new HistogramLeafCollector(singleton, skipper, bucketWidth, maxBuckets, counts);
}
}
return new HistogramNaiveSingleValuedLeafCollector(
singleton, bucketWidth, maxBuckets, counts);
}
}

@Override
public ScoreMode scoreMode() {
return ScoreMode.COMPLETE_NO_SCORES;
}

LongIntHashMap getCounts() {
return counts;
}

/**
* Naive implementation of a histogram {@link LeafCollector}, which iterates all maches and looks
* up the value to determine the corresponding bucket.
*/
private static class HistogramNaiveLeafCollector implements LeafCollector {

private final SortedNumericDocValues values;
private final long bucketWidth;
private final int maxBuckets;
private final LongIntHashMap counts;

HistogramNaiveLeafCollector(
SortedNumericDocValues values, long bucketWidth, int maxBuckets, LongIntHashMap counts) {
this.values = values;
this.bucketWidth = bucketWidth;
this.maxBuckets = maxBuckets;
this.counts = counts;
}

@Override
public void setScorer(Scorable scorer) throws IOException {}

@Override
public void collect(int doc) throws IOException {
if (values.advanceExact(doc)) {
int valueCount = values.docValueCount();
long prevBucket = Long.MIN_VALUE;
for (int i = 0; i < valueCount; ++i) {
final long value = values.nextValue();
final long bucket = Math.floorDiv(value, bucketWidth);
// We must not double-count values that map to the same bucket since this returns doc
// counts as opposed to value counts.
if (bucket != prevBucket) {
counts.addTo(bucket, 1);
checkMaxBuckets(counts.size(), maxBuckets);
prevBucket = bucket;
}
}
}
}
}

/**
* Naive implementation of a histogram {@link LeafCollector}, which iterates all maches and looks
* up the value to determine the corresponding bucket.
*/
private static class HistogramNaiveSingleValuedLeafCollector implements LeafCollector {

private final NumericDocValues values;
private final long bucketWidth;
private final int maxBuckets;
private final LongIntHashMap counts;

HistogramNaiveSingleValuedLeafCollector(
NumericDocValues values, long bucketWidth, int maxBuckets, LongIntHashMap counts) {
this.values = values;
this.bucketWidth = bucketWidth;
this.maxBuckets = maxBuckets;
this.counts = counts;
}

@Override
public void setScorer(Scorable scorer) throws IOException {}

@Override
public void collect(int doc) throws IOException {
if (values.advanceExact(doc)) {
final long value = values.longValue();
final long bucket = Math.floorDiv(value, bucketWidth);
counts.addTo(bucket, 1);
checkMaxBuckets(counts.size(), maxBuckets);
}
}
}

/**
* Optimized histogram {@link LeafCollector}, that takes advantage of the doc-values index to
* speed up collection.
*/
private static class HistogramLeafCollector implements LeafCollector {

private final NumericDocValues values;
private final DocValuesSkipper skipper;
private final long bucketWidth;
private final int maxBuckets;
private final int[] counts;
private final long leafMinBucket;
private final LongIntHashMap collectorCounts;

/** Max doc ID (inclusive) up to which all docs values may map to the same bucket. */
private int upToInclusive = -1;

/** Whether all docs up to {@link #upToInclusive} values map to the same bucket. */
private boolean upToSameBucket;

/** Index in {@link #counts} for docs up to {@link #upToInclusive}. */
private int upToBucketIndex;

HistogramLeafCollector(
NumericDocValues values,
DocValuesSkipper skipper,
long bucketWidth,
int maxBuckets,
LongIntHashMap collectorCounts) {
this.values = values;
this.skipper = skipper;
this.bucketWidth = bucketWidth;
this.maxBuckets = maxBuckets;
this.collectorCounts = collectorCounts;

leafMinBucket = Math.floorDiv(skipper.minValue(), bucketWidth);
long leafMaxBucket = Math.floorDiv(skipper.maxValue(), bucketWidth);
counts = new int[Math.toIntExact(leafMaxBucket - leafMinBucket + 1)];
}

@Override
public void setScorer(Scorable scorer) throws IOException {}

private void advanceSkipper(int doc) throws IOException {
if (doc > skipper.maxDocID(0)) {
skipper.advance(doc);
}
upToSameBucket = false;

if (skipper.minDocID(0) > doc) {
// Corner case which happens if `doc` doesn't have a value and is between two intervals of
// the doc-value skip index.
upToInclusive = skipper.minDocID(0) - 1;
return;
}

upToInclusive = skipper.maxDocID(0);

// Now find the highest level where all docs map to the same bucket.
for (int level = 0; level < skipper.numLevels(); ++level) {
int totalDocsAtLevel = skipper.maxDocID(level) - skipper.minDocID(level) + 1;
long minBucket = Math.floorDiv(skipper.minValue(level), bucketWidth);
long maxBucket = Math.floorDiv(skipper.maxValue(level), bucketWidth);

if (skipper.docCount(level) == totalDocsAtLevel && minBucket == maxBucket) {
// All docs at this level have a value, and all values map to the same bucket.
upToInclusive = skipper.maxDocID(level);
upToSameBucket = true;
upToBucketIndex = (int) (minBucket - this.leafMinBucket);
} else {
break;
}
}
}

@Override
public void collect(int doc) throws IOException {
if (doc > upToInclusive) {
advanceSkipper(doc);
}

if (upToSameBucket) {
counts[upToBucketIndex]++;
} else if (values.advanceExact(doc)) {
final long value = values.longValue();
final long bucket = Math.floorDiv(value, bucketWidth);
counts[(int) (bucket - leafMinBucket)]++;
}
}

@Override
public void finish() throws IOException {
// Put counts that we computed in the int[] back into the hash map.
for (int i = 0; i < counts.length; ++i) {
collectorCounts.addTo(leafMinBucket + i, counts[i]);
}
checkMaxBuckets(collectorCounts.size(), maxBuckets);
}
}

private static void checkMaxBuckets(int size, int maxBuckets) {
if (size > maxBuckets) {
throw new IllegalStateException(
"Collected "
+ size
+ " buckets, which is more than the configured max number of buckets: "
+ maxBuckets);
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.sandbox.facet.plain.histograms;

import java.io.IOException;
import java.util.Collection;
import java.util.Objects;
import org.apache.lucene.document.FieldType;
import org.apache.lucene.internal.hppc.LongIntHashMap;
import org.apache.lucene.internal.hppc.LongIntHashMap.LongIntCursor;
import org.apache.lucene.search.CollectorManager;

/**
* {@link CollectorManager} that computes a histogram of the distribution of the values of a field.
*
* <p>It takes an {@code bucketWidth} as a parameter and counts the number of documents that fall
* into intervals [0, bucketWidth), [bucketWidth, 2*bucketWidth), etc. The keys of the returned
* {@link LongIntHashMap} identify these intervals as the quotient of the integer division by {@code
* bucketWidth}. Said otherwise, a key equal to {@code k} maps to values in the interval {@code [k *
* bucketWidth, (k+1) * bucketWidth)}.
*
* <p>This implementation is optimized for the case when {@code field} is part of the index sort and
* has a {@link FieldType#setDocValuesSkipIndexType skip index}.
*
* <p>Note: this collector is inspired from "YU, Muzhi, LIN, Zhaoxiang, SUN, Jinan, et al.
* TencentCLS: the cloud log service with high query performances. Proceedings of the VLDB
* Endowment, 2022, vol. 15, no 12, p. 3472-3482.", where the authors describe how they run
* "histogram queries" by sorting the index by timestamp and pre-computing ranges of doc IDs for
* every possible bucket.
*/
public final class HistogramCollectorManager
implements CollectorManager<HistogramCollector, LongIntHashMap> {

private static final int DEFAULT_MAX_BUCKETS = 1024;

private final String field;
private final long bucketWidth;
private final int maxBuckets;

/**
* Compute a histogram of the distribution of the values of the given {@code field} according to
* the given {@code bucketWidth}. This configures a maximum number of buckets equal to the default
* of 1024.
*/
public HistogramCollectorManager(String field, long bucketWidth) {
this(field, bucketWidth, DEFAULT_MAX_BUCKETS);
}

/**
* Expert constructor.
*
* @param maxBuckets Max allowed number of buckets. Note that this is checked at runtime and on a
* best-effort basis.
*/
public HistogramCollectorManager(String field, long bucketWidth, int maxBuckets) {
this.field = Objects.requireNonNull(field);
if (bucketWidth < 2) {
throw new IllegalArgumentException("bucketWidth must be at least 2, got: " + bucketWidth);
}
this.bucketWidth = bucketWidth;
if (maxBuckets < 1) {
throw new IllegalArgumentException("maxBuckets must be at least 1, got: " + maxBuckets);
}
this.maxBuckets = maxBuckets;
}

@Override
public HistogramCollector newCollector() throws IOException {
return new HistogramCollector(field, bucketWidth, maxBuckets);
}

@Override
public LongIntHashMap reduce(Collection<HistogramCollector> collectors) throws IOException {
LongIntHashMap reduced = new LongIntHashMap();
for (HistogramCollector collector : collectors) {
for (LongIntCursor cursor : collector.getCounts()) {
reduced.addTo(cursor.key, cursor.value);
}
}
return reduced;
}
}
Loading

0 comments on commit 2d422af

Please sign in to comment.