Welcome to the HeuroGraph-Library! This is a Python library designed for solving graph-related problems using heuristic algorithms. Whether you're working on graph coloring, maximum clique, or other graph optimization problems, this library provides a set of powerful heuristic algorithms to assist you in finding efficient solutions.
- Graph Coloring: Solve graph coloring problems using various heuristic techniques.
- Maximum Clique: Find maximum cliques in graphs through heuristic methods.
- Scalability: Designed for handling large-scale graphs efficiently.
- Easy Integration: Simple and straightforward integration into your Python projects.
-
Clone this repository:
git clone https://github.com/alexgiving/HeuroGraph-Library.git
-
Install dependencies
pip install -r requirements.txt
-
Set environment
export PYTHONPATH=${PYTHONPATH}:$(pwd)
Simple usage
from pathlib import Path
from graph_lib import Graph
from graph_lib.coloring import color_graph_greedy_sorted_shuffled
graph_DIMACS_path = Path('myciel3.col')
graph = Graph(graph_DIMACS_path)
coloring_result = color_graph_greedy_sorted_shuffled(graph)
coloring_result.num_colors
>> 4
Get benchmark data
bash scripts/download_coloring.sh
Run evaluation script
python benchmark/benchmark_coloring.py
Result table
Instance Time, s Colors
myciel3.col 0.00 4
myciel7.col 0.01 8
school1.col 0.05 31
school1_nsh.col 0.04 30
anna.col 0.00 11
miles1000.col 0.01 43
miles1500.col 0.01 73
le450_5a.col 0.04 11
le450_15b.col 0.04 17
queen11_11.col 0.00 15
Simple usage
from pathlib import Path
from graph_lib import Graph
from graph_lib.clique import greedy_randomized_clique
graph_DIMACS_path = Path('graph.clq')
graph = Graph(graph_DIMACS_path)
coloring_result = color_graph_greedy_sorted_shuffled(graph)
coloring_result.num_colors
>> [1, 2, 3, 4]
Get benchmark data
bash scripts/download_clique.sh
Run evaluation script
python benchmark/benchmark_clique.py
Result table
Instance Time, s Clique size
brock200_1.clq 0.73 21
brock200_2.clq 0.24 12
brock200_3.clq 0.39 15
brock200_4.clq 0.49 17
brock400_1.clq 3.30 23
brock400_2.clq 3.04 22
brock400_3.clq 3.02 22
brock400_4.clq 3.00 23
C125.9.clq 0.77 34
gen200_p0.9_44.clq 1.95 38
gen200_p0.9_55.clq 1.99 52
hamming8-4.clq 0.65 16
johnson16-2-4.clq 0.25 8
johnson8-2-4.clq 0.01 4
keller4.clq 0.33 11
MANN_a27.clq 43.12 125
MANN_a9.clq 0.11 16
p_hat1000-1.clq 1.33 10
p_hat1000-2.clq 8.36 38
p_hat1500-1.clq 3.60 11
p_hat300-3.clq 1.88 32
p_hat500-3.clq 5.67 43
san1000.clq 7.81 10
sanr200_0.9.clq 1.89 40
sanr400_0.7.clq 2.27 20
Contributions to HeuroGraph are welcome! If you find any issues or have suggestions for improvements, please open an issue or submit a pull request on the GitHub repository.
HeuroGraph is licensed under the MIT License. See the LICENSE file for more information.
@misc{HeuroGraph2023,
author = {Aleksei Trutnev},
title = {Heuristic Graph-related problem solvers},
year = {2023},
url = {https://github.com/alexgiving/HeuroGraph}
}
For any questions or inquiries, please contact [email protected].