This is a Trino plugin that provides a connector.
To run a Docker container with the connector, run the following: !!Get your docker tag from https://hub.docker.com/repository/docker/waseedockerhub9/trino-nlp-embeddings/tags
docker run \
-d \
--name trino-nlp-embeddings \
-p 8080:8080 \
waseedockerhub9/trino-nlp-embeddings:0.67
Then use your favourite SQL client to connect to Trino running at http://localhost:8080
Download one of the ZIP packages, unzip it and copy the trino-nlp-embeddings-0.1
directory to the plugin directory on every node in your Trino cluster.
Create a nlp_embeddings_connector.properties
file in your Trino catalog directory and set all the required properties.
connector.name=nlp_embeddings_connector
After reloading Trino, you should be able to connect to the nlp_embeddings_connector
catalog.
Run all the unit tests:
mvn test
Creates a deployable zip file:
mvn clean package
Unzip the archive from the target directory to use the connector in your Trino cluster.
unzip target/*.zip -d ${PLUGIN_DIRECTORY}/
mv ${PLUGIN_DIRECTORY}/trino-nlp-embeddings-* ${PLUGIN_DIRECTORY}/trino-nlp-embeddings
To test and debug the connector locally, run the NLPQueryRunner
class located in tests:
mvn test-compile exec:java -Dexec.mainClass="ai.knorket.NLPQueryRunner" -Dexec.classpathScope=test
And then run the Trino CLI using trino --server localhost:8080 --no-progress
and query it:
trino> show catalogs;
Catalog
---------
nlp_embeddings_connector
system
(2 rows)
trino> show tables from nlp_embeddings_connector.default;
Table
------------
single_row
(1 row)
trino> select * from nlp_embeddings_connector.default.single_row;
id | type | name
----+---------------+---------
x | default-value | my-name
(1 row)