-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathunit_tests.py
481 lines (363 loc) · 17.2 KB
/
unit_tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
from sunset_math.geometry import *
from sunset_math.TrapezoidProfile import *
from sunset_math.graph_theory import *
from architecture.scheduler import Scheduler
from architecture.architecture_relationships import *
import unittest
from unittest.mock import patch
import math
class TestCommand(Command):
def first_run_behavior(self):
pass
def periodic(self):
pass
def is_complete(self):
return True
class TestSubscriber(Subscriber):
def subscriber_periodic(self):
pass
class TestTopic(Topic):
def generate_messages_periodic(self):
return {}
def subscriber_periodic(self):
return super().subscriber_periodic()
class ArchitectureRelationshipsTest(unittest.TestCase):
def setUp(self):
self.scheduler = Scheduler()
def test_scheduler_initialization(self):
try:
self.scheduler.initialize()
except Exception as e:
self.fail("Scheduler initialization failed with exception: {}".format(str(e)))
def test_scheduler_set_command_group(self):
command = TestCommand([])
self.scheduler.set_command_group(command)
self.assertIsInstance(self.scheduler.root_command, Command)
def test_scheduler_advance_command(self):
command1 = TestCommand([])
command2 = TestCommand([])
command1.setNext(command2)
self.scheduler.set_command_group(command1)
self.scheduler.advance_command()
self.assertEqual(self.scheduler.root_command, command2)
def test_subscriber_store_messages(self):
subscriber = TestSubscriber(False)
message = Message({"test": "test"})
subscriber.store_messages("test_topic", message)
self.assertIn("test_topic", subscriber.messages)
def test_subscriber_periodic(self):
subscriber = TestSubscriber(False)
with patch.object(subscriber, 'subscriber_periodic', wraps=subscriber.subscriber_periodic) as mocked_method:
subscriber.periodic()
mocked_method.assert_called_once()
def test_subscriber_periodic_sim(self):
subscriber = TestSubscriber(True)
with patch.object(subscriber, 'subscriber_periodic_sim',
wraps=subscriber.subscriber_periodic_sim) as mocked_method:
subscriber.periodic()
mocked_method.assert_called_once()
def test_command_set_next(self):
command1 = TestCommand([])
command2 = TestCommand([])
command1.setNext(command2)
self.assertEqual(command1.next_command, command2)
def test_command_first_run(self):
command = TestCommand([])
command.first_run()
self.assertTrue(command.first_run_occurred)
def test_parallel_command(self):
command1 = TestCommand([])
command2 = TestCommand([])
parallel_command = ParallelCommand([command1, command2])
parallel_command.first_run()
self.assertTrue(parallel_command.first_run_occurred)
def test_parallel_command_with_next_in(self):
command1 = TestCommand([])
command2 = TestCommand([])
command3 = TestCommand([])
command1.setNext(command3)
parallel_command = ParallelCommand([command1, command2])
# two iterations of periodic should be enough to run all commands
parallel_command.periodic()
parallel_command.periodic()
# assert that command3 was run
self.assertTrue(command3.first_run_occurred)
def test_topic_add_subscriber(self):
topic = TestTopic()
subscriber = TestSubscriber(False)
topic.add_subscriber(subscriber)
self.assertIn(subscriber, topic.subscribers)
def test_topic_publish_periodic(self):
topic = TestTopic()
subscriber = TestSubscriber(False)
topic.add_subscriber(subscriber)
with patch.object(subscriber, 'store_messages', wraps=subscriber.store_messages) as mocked_method:
topic.publish_periodic()
mocked_method.assert_called_once()
class TestTrapezoidProfile(unittest.TestCase):
def setUp(self):
self.max_accel = 30
self.max_decel = 30
self.max_vel = 50
self.target_position_positive = 300
self.target_position_negative = -300
self.profile_positive = TrapezoidProfile(self.max_accel, self.max_decel, self.max_vel,
self.target_position_positive)
self.profile_negative = TrapezoidProfile(self.max_accel, self.max_decel, self.max_vel,
self.target_position_negative)
def test_positive_profile_duration(self):
expected_profile_duration = self.profile_positive.dt1 + self.profile_positive.dt2 + self.profile_positive.dt3
self.assertEqual(self.profile_positive.profileDuration, expected_profile_duration)
def test_negative_profile_duration(self):
expected_profile_duration = self.profile_negative.dt1 + self.profile_negative.dt2 + self.profile_negative.dt3
self.assertEqual(self.profile_negative.profileDuration, expected_profile_duration)
def test_end_state_positive(self):
final_state = self.profile_positive.getState(self.profile_positive.profileDuration)
self.assertAlmostEqual(final_state.x, self.target_position_positive, 4)
self.assertAlmostEqual(final_state.v, 0, 4)
self.assertAlmostEqual(final_state.a, 0, 4)
def test_end_state_negative(self):
final_state = self.profile_negative.getState(self.profile_negative.profileDuration)
self.assertAlmostEqual(final_state.x, self.target_position_negative, 4)
self.assertAlmostEqual(final_state.v, 0, 4)
self.assertAlmostEqual(final_state.a, 0, 4)
def test_mid_state_positive(self):
mid_state = self.profile_positive.getState(self.profile_positive.profileDuration / 2)
self.assertTrue(mid_state.v <= self.max_vel)
self.assertTrue(math.fabs(mid_state.a) <= self.max_accel)
def test_mid_state_negative(self):
mid_state = self.profile_negative.getState(self.profile_negative.profileDuration / 2)
self.assertTrue(mid_state.v <= -self.max_vel)
self.assertTrue(math.fabs(mid_state.a) <= self.max_accel)
class DummyTopic(Topic):
def generate_messages_periodic(self):
pass # Add any implementation here if necessary
def __str__(self) -> str:
return self.name
def __repr__(self) -> str:
return self.name
class AssessTopicSorting(unittest.TestCase):
def test_sort_topics_by_dependency(self):
topic1 = DummyTopic('Topic1')
topic2 = DummyTopic('Topic2')
topic3 = DummyTopic('Topic3')
topic4 = DummyTopic('Topic4')
topic2.add_subscriber(topic1) # Topic2 is dependent on Topic1
topic3.add_subscriber(topic2) # Topic3 is dependent on Topic2
topic4.add_subscriber(topic1) # Topic4 is dependent on Topic1
topics = [topic1, topic2, topic3, topic4]
sorted_topics = dependency_sort(topics)
self.assertEqual(sorted_topics, [topic4, topic3, topic2, topic1])
class AssessGraphModule(unittest.TestCase):
def test_find_connected_subgraphs(self):
topic1 = DummyTopic("Topic1")
topic2 = DummyTopic("Topic2")
topic3 = DummyTopic("Topic3")
topic4 = DummyTopic("Topic4")
topic5 = DummyTopic("Topic5")
topic6 = DummyTopic("Topic6")
topic7 = DummyTopic("Topic7")
# we have two connected subgraphs
topic1.add_subscriber(topic2)
topic1.add_subscriber(topic3)
topic1.add_subscriber(topic7)
topic4.add_subscriber(topic5)
topic4.add_subscriber(topic6)
predicted_group_a = [topic1, topic2, topic3, topic7]
predicted_group_b = [topic4, topic5, topic6]
topics = [topic1, topic2, topic3, topic4, topic5, topic6, topic7]
subgraphs = find_connected_subgraphs(topics)
# there should be two subgraphs
assert len(subgraphs) == 2
# the subgraphs should be the same as the predicted subgraphs
assert subgraphs[0] == predicted_group_a
assert subgraphs[1] == predicted_group_b
def test_cycle_detection_no_cycle_1(self):
topic1 = DummyTopic("Topic1")
topic2 = DummyTopic("Topic2")
topic3 = DummyTopic("Topic3")
topic7 = DummyTopic("Topic7")
topic1.add_subscriber(topic2)
topic1.add_subscriber(topic3)
topic1.add_subscriber(topic7)
topics = [topic1, topic2, topic3, topic7]
is_cycle = is_cycle_present(topics)
assert is_cycle == False
def test_cycle_detection_no_cycle_2(self):
topic1 = DummyTopic("Topic1")
topic2 = DummyTopic("Topic2")
topic3 = DummyTopic("Topic3")
topic7 = DummyTopic("Topic7")
topic1.add_subscriber(topic2)
topic2.add_subscriber(topic3)
topic3.add_subscriber(topic7)
topics = [topic1, topic2, topic3, topic7]
is_cycle = is_cycle_present(topics)
assert is_cycle == False
def test_cycle_detection_cycle_1(self):
topic1 = DummyTopic("Topic1")
topic2 = DummyTopic("Topic2")
topic3 = DummyTopic("Topic3")
topic7 = DummyTopic("Topic7")
topic1.add_subscriber(topic2)
topic2.add_subscriber(topic3)
topic3.add_subscriber(topic7)
topic7.add_subscriber(topic1)
topics = [topic1, topic2, topic3, topic7]
is_cycle = is_cycle_present(topics)
assert is_cycle == True
def test_cylce_detection_one_vertex(self):
topic1 = DummyTopic("Topic1")
topics = [topic1]
is_cycle = is_cycle_present(topics)
assert is_cycle == False
def test_for_cycle_in_disconnected_graph_no_cycle(self):
topic1 = DummyTopic("Topic1")
topic2 = DummyTopic("Topic2")
topic3 = DummyTopic("Topic3")
topic4 = DummyTopic("Topic4")
topic5 = DummyTopic("Topic5")
topic6 = DummyTopic("Topic6")
topic7 = DummyTopic("Topic7")
# we have two connected subgraphs
topic1.add_subscriber(topic2)
topic1.add_subscriber(topic3)
topic1.add_subscriber(topic7)
topic4.add_subscriber(topic5)
topic4.add_subscriber(topic6)
topics = [topic1, topic2, topic3, topic4, topic5, topic6]
assert cycle_is_present_in_any(topics) == False
def test_for_cycle_in_disconnected_graph_with_cycle(self):
topic1 = DummyTopic("Topic1")
topic2 = DummyTopic("Topic2")
topic3 = DummyTopic("Topic3")
topic4 = DummyTopic("Topic4")
topic5 = DummyTopic("Topic5")
topic6 = DummyTopic("Topic6")
topic7 = DummyTopic("Topic7")
# we have two connected subgraphs
topic1.add_subscriber(topic2)
topic1.add_subscriber(topic3)
topic1.add_subscriber(topic7)
topic4.add_subscriber(topic5)
topic4.add_subscriber(topic6)
topic5.add_subscriber(topic4)
topics = [topic1, topic2, topic3, topic4, topic5, topic6]
assert cycle_is_present_in_any(topics) == True
class TestQuaternion(unittest.TestCase):
def test_mul(self):
q1 = Quaternion(1, 0, 0, 0) # Identity quaternion
q2 = Quaternion.from_angle_axis(np.pi, np.array([0, 0, 1])) # 180-degree rotation about Z axis
q3 = q1 * q2
np.testing.assert_allclose([q3.w, q3.x, q3.y, q3.z], [0, 0, 0, 1], atol=1e-6)
def test_to_rotation_matrix(self):
q = Quaternion.from_angle_axis(np.pi / 2, np.array([0, 0, 1])) # 90-degree rotation about Z axis
R = q.to_rotation_matrix()
np.testing.assert_allclose(R, np.array([
[0, -1, 0],
[1, 0, 0],
[0, 0, 1]
]), atol=1e-6)
class TestSO3(unittest.TestCase):
def test_from_euler(self):
so3 = SO3.from_euler(np.pi / 2, 0, 0)
expected_rotation_matrix = np.array([
[1, 0, 0],
[0, 0, -1],
[0, 1, 0]
])
np.testing.assert_allclose(so3.rotation_matrix, expected_rotation_matrix, rtol=1e-5, atol=1e-8)
def test_mul(self):
so3_1 = SO3.from_euler(np.pi / 2, 0, 0)
so3_2 = SO3.from_euler(0, np.pi / 2, 0)
result = so3_1 * so3_2
expected_rotation_matrix = np.dot(so3_1.rotation_matrix,
so3_2.rotation_matrix) # Update the expected_rotation_matrix
np.testing.assert_allclose(result.rotation_matrix, expected_rotation_matrix, rtol=1e-5, atol=1e-8)
def test_inverse(self):
so3 = SO3.from_euler(np.pi / 2, 0, 0)
result = so3.inverse()
expected_rotation_matrix = np.array([
[1, 0, 0],
[0, 0, 1],
[0, -1, 0]
])
np.testing.assert_allclose(result.rotation_matrix, expected_rotation_matrix, rtol=1e-5, atol=1e-8)
class TestSE3(unittest.TestCase):
def setUp(self):
self.tolerance = 1e-6
def test_transform_to(self):
# Define transforms
origin = SE3(SO3.from_euler(0, 0, 0), np.array([0, 0, 0]))
A = SE3.from_euler_and_translation(np.pi / 4, np.pi / 4, np.pi / 4, 1, 2, 3)
B = SE3.from_euler_and_translation(np.pi / 2, np.pi / 2, np.pi / 2, 4, 5, 6)
# Test transform_to
transform_A_to_B = A.transform_to(B)
expected_transform = B * A.inverse()
self.assertTrue(
np.allclose(transform_A_to_B.rotation.rotation_matrix, expected_transform.rotation.rotation_matrix,
rtol=self.tolerance, atol=self.tolerance))
self.assertTrue(np.allclose(transform_A_to_B.translation, expected_transform.translation, rtol=self.tolerance,
atol=self.tolerance))
def test_rotate_around(self):
# Define a rotation of 90 degrees around the z-axis at the origin
rot = SO3.from_euler(0, 0, np.pi / 2)
other = SE3(rot, np.array([0, 0, 0]))
# Define a point at (1, 0, 0)
point = SE3(SO3(np.eye(3)), np.array([1, 0, 0]))
# Rotate the point around the origin
result = point.rotate_around(other)
# Check if the result is correct
np.testing.assert_almost_equal(result.translation, np.array([0, 1, 0]))
def test_relative_to(self):
# Define transforms
origin = SE3(SO3.from_euler(0, 0, 0), np.array([0, 0, 0]))
A = SE3.from_euler_and_translation(np.pi / 4, np.pi / 4, np.pi / 4, 1, 2, 3)
B = SE3.from_euler_and_translation(np.pi / 2, np.pi / 2, np.pi / 2, 4, 5, 6)
# Test relative_to
A_relative_to_B = A.relative_to(B)
expected_relative = B.inverse() * A
self.assertTrue(
np.allclose(A_relative_to_B.rotation.rotation_matrix, expected_relative.rotation.rotation_matrix,
rtol=self.tolerance, atol=self.tolerance))
self.assertTrue(np.allclose(A_relative_to_B.translation, expected_relative.translation, rtol=self.tolerance,
atol=self.tolerance))
def test_from_euler_and_translation(self):
se3 = SE3.from_euler_and_translation(np.pi / 2, 0, 0, 1, 2, 3)
expected_rotation = SO3.from_euler(np.pi / 2, 0, 0)
expected_translation = np.array([1, 2, 3])
np.testing.assert_array_almost_equal(se3.rotation.rotation_matrix, expected_rotation.rotation_matrix)
np.testing.assert_array_almost_equal(se3.translation, expected_translation)
def test_mul(self):
rotation_matrix1 = np.array([[0, 0, 1],
[0, 1, 0],
[-1, 0, 0]])
rotation_matrix2 = np.array([[0, -1, 0],
[1, 0, 0],
[0, 0, 1]])
translation1 = np.array([1, 2, 3])
translation2 = np.array([4, 5, 6])
se3_1 = SE3(SO3(rotation_matrix1), translation1)
se3_2 = SE3(SO3(rotation_matrix2), translation2)
result = se3_1 * se3_2
expected_rotation_matrix = np.dot(rotation_matrix1, rotation_matrix2) # rotation matrices are multiplied
expected_rotation = SO3(expected_rotation_matrix)
expected_translation = np.dot(rotation_matrix1,
translation2) + translation1 # translations are added after rotation
np.testing.assert_array_almost_equal(result.rotation.rotation_matrix, expected_rotation.rotation_matrix)
np.testing.assert_array_almost_equal(result.translation, expected_translation)
def test_inverse(self):
rotation_matrix = np.array([[0, 0, 1],
[0, 1, 0],
[-1, 0, 0]])
translation = np.array([1, 2, 3])
se3 = SE3(SO3(rotation_matrix), translation)
result = se3.inverse()
expected_rotation_matrix = rotation_matrix.transpose() # the inverse of a rotation matrix is its transpose
expected_rotation = SO3(expected_rotation_matrix)
expected_translation = - np.dot(expected_rotation_matrix,
se3.translation) # note the updated expected translation
np.testing.assert_array_almost_equal(result.rotation.rotation_matrix, expected_rotation.rotation_matrix)
np.testing.assert_array_almost_equal(result.translation, expected_translation)
if __name__ == '__main__':
unittest.main()