Skip to content

MrGeislinger/flatiron-school-data-science-curriculum-resources

Repository files navigation

Cohort FT-011121

Phase 1

Phase 1 Topic 01 - Getting Started with Data Science

Recordings

Title Date URL
Introduction to Data Science 2021-01-11 youtu.be/R7pM6SluD60

Phase 1 Topic 02 - Bash and Git

Recordings

Title Date URL
Command Line Basics 2021-01-11 youtu.be/fjZFp2oTveg
Intro to Using Git with GitHub 2021-01-12 youtu.be/GGh9X5Iby10

Phase 1 Topic 03 - Control Flow, Functions, and Statistics

Recordings

Title Date URL
Python Conventions & Best Practices 2021-01-11 youtu.be/3YxS_5dW3aY
Python Basics 2021-01-11 youtu.be/0ffOdnVmjHg
Some More Python Basics: Control Flow 2021-01-12 youtu.be/iLrqpbZvWb0
More Python: Functions 2021-01-13 youtu.be/FrklluKZWHw

Phase 1 Topic 04 - Python Libraries: Numpy and Pandas

Recordings

Title Date URL
Intro to NumPy 2021-01-13 youtu.be/-z-n8Hrtvl8
Intro to Pandas from NumPy 2021-01-15 youtu.be/S7p2w4cXc9o

Phase 1 Topic 05 - Data Cleaning in Pandas

Recordings

Title Date URL
More Pandas: Exploring and Manipulating Data 2021-01-19 youtu.be/m67HtpXYv3U

Phase 1 Topic 06 - Data Visualization

Recordings

Title Date URL
Concepts of Data Visualization 2021-01-20 youtu.be/AxlWpplunVo

Phase 1 Topic 07 - SQL and Relational Databases & Phase 1 Topic 08 - Other Database Structures

Recordings

Title Date URL
SQL with Python & Pandas 2021-01-22 youtu.be/VFN89HOa9m0

Curriculum (v2.1)

Module 1

Module 1 Section 01 - Getting Started with Data Science

Recordings

Title Date URL
The Data Science Process 2020-01-23 youtu.be/UZlPoaD4Bvw
Python Basics & Coding Practices 2020-01-23 youtu.be/uw4in0E8vvE

Module 1 Section 02 - Bash and Git

Recordings

Title Date URL
Forking a GitHub Repo 2020-01-22 youtu.be/SOKH8Xni_BE
Copy GitHub Repo Without Forking 2020-01-22 youtu.be/q0_MMK8AS8E
Command Line Basics 2020-01-28 youtu.be/Nta5HpFKDRc
The Git Basics 2020-01-28 youtu.be/Rx85RNB4gn4
GitHub Basics with Git 2020-01-28 youtu.be/F-VQbMxgm1o

Module 1 Section 03 - Control Flow, Functions, and Statistics

Recordings

Title Date URL
Python Basics: Lists, Dictionaries, and More 2020-01-29 youtu.be/Mdi1dWzCIZE
Python Basics: Control Flow 2020-01-29 youtu.be/q1ZMx9p6dJo
Python Basics: Functions 2020-01-29 youtu.be/7pcILR2LtKo

Module 1 Section 04 - Python Libraries: NumPy and Pandas

Recordings

Title Date URL
NumPy Intro 2020-02-05 youtu.be/Ea5tmWo0e5k
NumPy Activity 2020-02-05 youtu.be/ROiNq5WTjCc
From NumPy to Pandas 2020-02-05 youtu.be/Ng_TzUentmk

Module 1 Section 05 - Data Cleaning in Pandas

Recordings

Title Date URL
Brief Extra: Pandas & Loading Data 2020-02-05 youtu.be/-nr7bi7lVxQ
Data Exploration with Pandas 2020-02-11 youtu.be/W_ey_4uIGQ0
Data Exploration & Cleaning with Python 2020-02-11 youtu.be/KXNzYfWUoUM

Module 1 Section 06 - Data Visualization

Recordings

Title Date URL
Why Should I Visualize Data? 2020-02-11 youtu.be/AjEdgBRbvUU
Who Are Visualizations For? 2020-02-11 youtu.be/8t452nMFApc
Visualizations: The Good, The Bad & The Ugly 2020-02-12 youtu.be/yvwyvCt8qAI
Data Exploration Activity 2020-02-12 youtu.be/XPT6QgMbPos

Module 1 Section 07 - SQL and Relational Databases

Recordings

Title Date URL
SQL & Realtional Databases Intro 2020-02-18 youtu.be/Ca-8RRZlLLo
Running SQL in Python 2020-02-18 youtu.be/IjF3bNF-eHc
More SQL & Joining Tables 2020-02-18 youtu.be/1PXDL-S71Cc
Creating and Updating SQL Databases 2020-02-18 youtu.be/c8Gyv_LXH8o
SQL & Execution Order 2020-02-19 youtu.be/NJEOpxZP9TI
SQL Subqueries 2020-02-19 youtu.be/mAEgY7BGlN8

Module 1 Section 08: Other Database structures

Recordings

Module 1 Section 09: JSON and APIs

Recordings

Title Date URL
JSON Data Format for Python 2020-02-19 youtu.be/EbCjd6OPdvg
APIs with Python 2020-02-19 youtu.be/NsfITpjTqAA
API Example with LIFX 2020-02-19 youtu.be/-zsoxAzkSLU

Module 1 Section 10: HTML, CSS, and Web Scraping

Recordings

Title Date URL
HTML and CSS Intro for Web Scraping 2020-02-26 youtu.be/MadMEVGMTUE
Intro & Ethics to Web Scraping 2020-02-26 youtu.be/ceH08GJlIOo
Web Scraping with Python & Beautiful Soup 2020-02-26 youtu.be/f6lj7xC0Y2g
Web Scraping Demo: Adventure Time 2020-02-26 youtu.be/v_a1qUuXd1Y

Module 1 Project: Movie Analysis

Module 2

Module 2 Section 11 - Combinatorics and Probability

Recordings

Title Date URL
Conditional Probability 2020-03-17 youtu.be/JDgm4Wqsvuw
Combinatorics 2020-03-17 youtu.be/hs5EFpUcTzw

Module 2 Section 12 - Statistical Distributions

Recordings

Title Date URL
Frequency Distributions & More Statistics 2020-03-19 youtu.be/bNUpLoDgLig
Review & Other Statistical Distributions 2020-03-24 youtu.be/YRor7gBV9Kw
Even More Statistical Distributions 2020-03-24 youtu.be/dVSnNHKyeAM

Module 2 Section 13 - Central Limit Theorem and Confidence Intervals

Recordings

Title Date URL
Sampling 2020-03-24 youtu.be/x5KVX3ccbuc
Central Limit Theorem 2020-03-24 youtu.be/c2NDqWrCBno
Where Do Confidence Intervals Come From? 2020-03-26 youtu.be/jHLoLCCtumc

Module 2 Section 14 - Hypothesis Testing

Recordings

Title Date URL
What Makes a Good Experiment? 2020-03-26 youtu.be/746no4_NvRM
Hypothesis Testing Intro 2020-03-26 youtu.be/TE8C-PsZfrw
Hypothesis Testing 2020-03-31 youtu.be/JnO5wKYnNfQ
The t-Distribution & t-Test 2020-03-31 youtu.be/8zey4ICieg0
Type 1 vs Type 2 Errors 2020-03-31 youtu.be/1IybE0mXWl4

Module 2 Section 15 - Statistical Power & ANOVA

Recordings

Title Date URL
Effect Size & Statistical Power Relationship 2020-03-31 youtu.be/0HtaoDgOF_A
Welch's t-Test vs Student's t-Test 2020-04-01 youtu.be/QNftsEYSwFA
Multiple Comparisons Warning 2020-04-07 youtu.be/voHPvSkX3f4
Introduction to ANOVA 2020-04-07 youtu.be/y1UWYQHw5Jo
Coding ANOVA: SciPy Method 2020-04-07 youtu.be/QnE8sBrKoNU
Coding ANOVA: Statsmodels OLS Method 2020-04-07 youtu.be/3cCM0lQFMM4

Module 2 Section 16 - A/B Testing

Recordings

Title Date URL
A/B Testing 2020-04-07 youtu.be/2DVXuR-2LeA

Module 2 Section 17 - Bayesian Statistics

Recordings

Title Date URL
Bayesian Thinking 2020-04-21 [youtu.be/odZOxI_3BNI](https://youtu.be/odZOxI_3BNI]
Bayes' Theorem Coding Example: Testing Positive 2020-04-21 [youtu.be/yN7BPP25Bvg](https://youtu.be/yN7BPP25Bvg]
Visual of Bayes' Theorem 2020-04-21 [youtu.be/ib1a7c8MrtQ](https://youtu.be/ib1a7c8MrtQ]
Bayes' Theorem Followup: Testing Positive Twice 2020-04-21 [youtu.be/VgGUngEkYok](https://youtu.be/VgGUngEkYok]

Module 2 Section 18 - Introduction to Linear Regression

Recordings

Title Date URL
Intro to Linear Regression 2020-04-09 youtu.be/PBv749p-9yY

Module 2 Section 19 - Multiple Linear Regression

Recordings

Title Date URL
Multiple Linear Regression 2020-04-15 youtu.be/drbltsGcRNQ
Handling Categorical Variables 2020-04-15 youtu.be/57Cy58UnKv0
Dealing with Multicollinearity 2020-04-16 youtu.be/eGSG79vF6_E
Validating Models & k-Fold Cross-Validation 2020-04-16 youtu.be/nmIxCbv09G0

Module 2 Section 20 - Extensions to Linear Regression

Recordings

Title Date URL
Extending Linear Regression: Polynomial & Interacting Terms 2020-04-22 [youtu.be/QbkwZ9cCb8I](https://youtu.be/QbkwZ9cCb8I]

Curriculum (v2.0)

Module 3

Module 3 Section 17 - Combinatorics

Module 3 Section 18 - Statistical Distributions

Module 3 Section 19 - Central Limit Theorem

Module 3 Section 20 - Hypothesis Testing

Module 3 Section 21 - Statistical Power & ANOVA

Module 3 Section 22 - AB Testing

Module 3 Section 23 - Bayesian Statistics

Module 3 Section 24 - Resampling and Monte Carlo Simulation

Module 4

Module 4 Section 25 - A Complete Data Science Project Using Multiple Regression

Module 4 Section 26 - Linear Algebra

Module 4 Section 27 - Calculus, Cost Function, and Gradient Descent

Derivatives - derivatives.ipynb

Module 4 Section 28 - Extensions to Linear Models

Module 4 Section 29 - Introduction to Logistic Regression

Module 4 Section 30 - In-depth Logistic Regression

Module 4 Section 31 - Working with Time Series Data

Module 4 Section 32 - Time Series Modeling

Module 5

Module 5 Section 33 - K Nearest Neighbors

Module 5 Section 34 - Decision Trees

Module 5 Section 35 - Ensemble Methods

Recordings

Title Date URL
Ensemble Machine Learning: Bagging & Boosting 2019-10-24 [youtu.be/xI-XdP2FLis](https://youtu.be/xI-XdP2FLis]
Machine Learning with Ensembles: Bagging & Boosting 2020-09-21 [youtu.be/nIYnh6uAun0](https://youtu.be/nIYnh6uAun0]
Ensemble Methods in Machine Learning: Bagging & Boosting 2019-11-08 [youtu.be/j1B1k1PZ8Wg](https://youtu.be/j1B1k1PZ8Wg]

Module 5 Section 36 - Support Vector Machines

Module 5 Section 37 - Principal Component Analysis

Module 5 Section 38 - Clustering

Module 5 Section 39 - Building a Machine Learning Pipeline

Recordings

Title Date URL
Machine Learning Pipelines 2019-11-14 youtu.be/SjeEM0r7RZo
Grid Search of Hyperparameters 2019-11-14 youtu.be/oi2NjZPQcmQ

Module 5 Section 40 - Big Data in PySpark

Recordings

Title Date URL
Big Data & MapReduce 2019-11-12 youtu.be/LQVXvg1dL-8
Intro to Identifying & Handling Big Data 2019-08-15 youtu.be/tRd_hVTxk24
Intro to MapReduce 2019-08-15 youtu.be/2Amvm-BpCxg
MapReduce Coding Example 2019-08-15 youtu.be/AwsWrryp6tY

Module 5 Section 41 - Recommendation Systems

Recordings

Title Date URL
Recommendation Systems Intro 2019-11-15 youtu.be/lIIAEVxRl50
Neighbor-Based Collaboraitve Filtering 2019-11-15 youtu.be/pEOPyOCaoHw
Matrix Factorization & Embeddings 2019-11-15 youtu.be/olJKadbzdCQ
Embeddings Discussion 2019-11-15 youtu.be/V_6S4xw0JnQ
Recommendation Systems & Embeddings 2019-09-18 youtu.be/m1pj8hVnmn0
Module 6

Module 6 Section 42 - Graph Theory

Module 6 Section 43 - Foundations of Natural Language Processing

Module 6 Section 44 - Introduction to Deep Learning

Module 6 Section 45 - Multi-Layer Perceptrons

Module 6 Section 46 - Tuning Neural Networks

Moduel Section 49 - Deep NLP - Word Embeddings