-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #3 from LykosAI/add-experiments
Add comfyui_experiments module
- Loading branch information
Showing
10 changed files
with
1,040 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
## ComfyUI Experiments | ||
|
||
Based on or modified from: [comfyanonymous/ComfyUI_experiments](https://github.com/comfyanonymous/ComfyUI_experiments) @ 934dba9d206e4738e0dac26a09b51f1dffcb4e44 | ||
|
||
License: GPL-3.0 | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
import importlib | ||
import os | ||
|
||
node_list = [ #Add list of .py files containing nodes here | ||
"advanced_model_merging", | ||
"reference_only", | ||
"sampler_rescalecfg", | ||
"sampler_tonemap", | ||
"sampler_tonemap_rescalecfg", | ||
"sdxl_model_merging" | ||
] | ||
|
||
NODE_CLASS_MAPPINGS = {} | ||
NODE_DISPLAY_NAME_MAPPINGS = {} | ||
|
||
for module_name in node_list: | ||
imported_module = importlib.import_module(".{}".format(module_name), __name__) | ||
|
||
NODE_CLASS_MAPPINGS = {**NODE_CLASS_MAPPINGS, **imported_module.NODE_CLASS_MAPPINGS} | ||
if hasattr(imported_module, "NODE_DISPLAY_NAME_MAPPINGS"): | ||
NODE_DISPLAY_NAME_MAPPINGS = {**NODE_DISPLAY_NAME_MAPPINGS, **imported_module.NODE_DISPLAY_NAME_MAPPINGS} | ||
|
||
__all__ = ['NODE_CLASS_MAPPINGS', 'NODE_DISPLAY_NAME_MAPPINGS'] |
30 changes: 30 additions & 0 deletions
30
src/inference_core_nodes/comfyui_experiments/advanced_model_merging.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
import comfy_extras.nodes_model_merging | ||
|
||
class ModelMergeBlockNumber(comfy_extras.nodes_model_merging.ModelMergeBlocks): | ||
@classmethod | ||
def INPUT_TYPES(s): | ||
arg_dict = { "model1": ("MODEL",), | ||
"model2": ("MODEL",)} | ||
|
||
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}) | ||
|
||
arg_dict["time_embed."] = argument | ||
arg_dict["label_emb."] = argument | ||
|
||
for i in range(12): | ||
arg_dict["input_blocks.{}.".format(i)] = argument | ||
|
||
for i in range(3): | ||
arg_dict["middle_block.{}.".format(i)] = argument | ||
|
||
for i in range(12): | ||
arg_dict["output_blocks.{}.".format(i)] = argument | ||
|
||
arg_dict["out."] = argument | ||
|
||
return {"required": arg_dict} | ||
|
||
|
||
NODE_CLASS_MAPPINGS = { | ||
"ModelMergeBlockNumber": ModelMergeBlockNumber, | ||
} |
54 changes: 54 additions & 0 deletions
54
src/inference_core_nodes/comfyui_experiments/reference_only.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
import torch | ||
|
||
class ReferenceOnlySimple: | ||
@classmethod | ||
def INPUT_TYPES(s): | ||
return {"required": { "model": ("MODEL",), | ||
"reference": ("LATENT",), | ||
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64}) | ||
}} | ||
|
||
RETURN_TYPES = ("MODEL", "LATENT") | ||
FUNCTION = "reference_only" | ||
|
||
CATEGORY = "custom_node_experiments" | ||
|
||
def reference_only(self, model, reference, batch_size): | ||
model_reference = model.clone() | ||
size_latent = list(reference["samples"].shape) | ||
size_latent[0] = batch_size | ||
latent = {} | ||
latent["samples"] = torch.zeros(size_latent) | ||
|
||
batch = latent["samples"].shape[0] + reference["samples"].shape[0] | ||
def reference_apply(q, k, v, extra_options): | ||
k = k.clone().repeat(1, 2, 1) | ||
offset = 0 | ||
if q.shape[0] > batch: | ||
offset = batch | ||
|
||
for o in range(0, q.shape[0], batch): | ||
for x in range(1, batch): | ||
k[x + o, q.shape[1]:] = q[o,:] | ||
|
||
return q, k, k | ||
|
||
model_reference.set_model_attn1_patch(reference_apply) | ||
out_latent = torch.cat((reference["samples"], latent["samples"])) | ||
if "noise_mask" in latent: | ||
mask = latent["noise_mask"] | ||
else: | ||
mask = torch.ones((64,64), dtype=torch.float32, device="cpu") | ||
|
||
if len(mask.shape) < 3: | ||
mask = mask.unsqueeze(0) | ||
if mask.shape[0] < latent["samples"].shape[0]: | ||
print(latent["samples"].shape, mask.shape) | ||
mask = mask.repeat(latent["samples"].shape[0], 1, 1) | ||
|
||
out_mask = torch.zeros((1,mask.shape[1],mask.shape[2]), dtype=torch.float32, device="cpu") | ||
return (model_reference, {"samples": out_latent, "noise_mask": torch.cat((out_mask, mask))}) | ||
|
||
NODE_CLASS_MAPPINGS = { | ||
"ReferenceOnlySimple": ReferenceOnlySimple, | ||
} |
38 changes: 38 additions & 0 deletions
38
src/inference_core_nodes/comfyui_experiments/sampler_rescalecfg.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
import torch | ||
|
||
|
||
class RescaleClassifierFreeGuidance: | ||
@classmethod | ||
def INPUT_TYPES(s): | ||
return {"required": { "model": ("MODEL",), | ||
"multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}), | ||
}} | ||
RETURN_TYPES = ("MODEL",) | ||
FUNCTION = "patch" | ||
|
||
CATEGORY = "custom_node_experiments" | ||
|
||
def patch(self, model, multiplier): | ||
|
||
def rescale_cfg(args): | ||
cond = args["cond"] | ||
uncond = args["uncond"] | ||
cond_scale = args["cond_scale"] | ||
|
||
x_cfg = uncond + cond_scale * (cond - uncond) | ||
ro_pos = torch.std(cond, dim=(1,2,3), keepdim=True) | ||
ro_cfg = torch.std(x_cfg, dim=(1,2,3), keepdim=True) | ||
|
||
x_rescaled = x_cfg * (ro_pos / ro_cfg) | ||
x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg | ||
|
||
return x_final | ||
|
||
m = model.clone() | ||
m.set_model_sampler_cfg_function(rescale_cfg) | ||
return (m, ) | ||
|
||
|
||
NODE_CLASS_MAPPINGS = { | ||
"RescaleClassifierFreeGuidanceTest": RescaleClassifierFreeGuidance, | ||
} |
44 changes: 44 additions & 0 deletions
44
src/inference_core_nodes/comfyui_experiments/sampler_tonemap.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
import torch | ||
|
||
|
||
class ModelSamplerTonemapNoiseTest: | ||
@classmethod | ||
def INPUT_TYPES(s): | ||
return {"required": { "model": ("MODEL",), | ||
"multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}), | ||
}} | ||
RETURN_TYPES = ("MODEL",) | ||
FUNCTION = "patch" | ||
|
||
CATEGORY = "custom_node_experiments" | ||
|
||
def patch(self, model, multiplier): | ||
|
||
def sampler_tonemap_reinhard(args): | ||
cond = args["cond"] | ||
uncond = args["uncond"] | ||
cond_scale = args["cond_scale"] | ||
noise_pred = (cond - uncond) | ||
noise_pred_vector_magnitude = (torch.linalg.vector_norm(noise_pred, dim=(1)) + 0.0000000001)[:,None] | ||
noise_pred /= noise_pred_vector_magnitude | ||
|
||
mean = torch.mean(noise_pred_vector_magnitude, dim=(1,2,3), keepdim=True) | ||
std = torch.std(noise_pred_vector_magnitude, dim=(1,2,3), keepdim=True) | ||
|
||
top = (std * 3 + mean) * multiplier | ||
|
||
#reinhard | ||
noise_pred_vector_magnitude *= (1.0 / top) | ||
new_magnitude = noise_pred_vector_magnitude / (noise_pred_vector_magnitude + 1.0) | ||
new_magnitude *= top | ||
|
||
return uncond + noise_pred * new_magnitude * cond_scale | ||
|
||
m = model.clone() | ||
m.set_model_sampler_cfg_function(sampler_tonemap_reinhard) | ||
return (m, ) | ||
|
||
|
||
NODE_CLASS_MAPPINGS = { | ||
"ModelSamplerTonemapNoiseTest": ModelSamplerTonemapNoiseTest, | ||
} |
55 changes: 55 additions & 0 deletions
55
src/inference_core_nodes/comfyui_experiments/sampler_tonemap_rescalecfg.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
import torch | ||
|
||
|
||
class TonemapNoiseWithRescaleCFG: | ||
@classmethod | ||
def INPUT_TYPES(s): | ||
return {"required": {"model": ("MODEL",), | ||
"tonemap_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}), | ||
"rescale_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | ||
}} | ||
RETURN_TYPES = ("MODEL",) | ||
FUNCTION = "patch" | ||
|
||
CATEGORY = "custom_node_experiments" | ||
|
||
def patch(self, model, tonemap_multiplier, rescale_multiplier): | ||
|
||
def tonemap_noise_rescale_cfg(args): | ||
cond = args["cond"] | ||
uncond = args["uncond"] | ||
cond_scale = args["cond_scale"] | ||
|
||
# Tonemap | ||
noise_pred = (cond - uncond) | ||
noise_pred_vector_magnitude = (torch.linalg.vector_norm(noise_pred, dim=(1)) + 0.0000000001)[:, None] | ||
noise_pred /= noise_pred_vector_magnitude | ||
|
||
mean = torch.mean(noise_pred_vector_magnitude, dim=(1, 2, 3), keepdim=True) | ||
std = torch.std(noise_pred_vector_magnitude, dim=(1, 2, 3), keepdim=True) | ||
|
||
top = (std * 3 + mean) * tonemap_multiplier | ||
|
||
# Reinhard | ||
noise_pred_vector_magnitude *= (1.0 / top) | ||
new_magnitude = noise_pred_vector_magnitude / (noise_pred_vector_magnitude + 1.0) | ||
new_magnitude *= top | ||
|
||
# Rescale CFG | ||
x_cfg = uncond + (noise_pred * new_magnitude * cond_scale) | ||
ro_pos = torch.std(cond, dim=(1, 2, 3), keepdim=True) | ||
ro_cfg = torch.std(x_cfg, dim=(1, 2, 3), keepdim=True) | ||
|
||
x_rescaled = x_cfg * (ro_pos / ro_cfg) | ||
x_final = rescale_multiplier * x_rescaled + (1.0 - rescale_multiplier) * x_cfg | ||
|
||
return x_final | ||
|
||
m = model.clone() | ||
m.set_model_sampler_cfg_function(tonemap_noise_rescale_cfg) | ||
return (m, ) | ||
|
||
|
||
NODE_CLASS_MAPPINGS = { | ||
"TonemapNoiseWithRescaleCFG": TonemapNoiseWithRescaleCFG, | ||
} |
114 changes: 114 additions & 0 deletions
114
src/inference_core_nodes/comfyui_experiments/sdxl_model_merging.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
import comfy_extras.nodes_model_merging | ||
|
||
class ModelMergeSDXL(comfy_extras.nodes_model_merging.ModelMergeBlocks): | ||
@classmethod | ||
def INPUT_TYPES(s): | ||
arg_dict = { "model1": ("MODEL",), | ||
"model2": ("MODEL",)} | ||
|
||
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}) | ||
|
||
arg_dict["time_embed."] = argument | ||
arg_dict["label_emb."] = argument | ||
|
||
for i in range(9): | ||
arg_dict["input_blocks.{}".format(i)] = argument | ||
|
||
for i in range(3): | ||
arg_dict["middle_block.{}".format(i)] = argument | ||
|
||
for i in range(9): | ||
arg_dict["output_blocks.{}".format(i)] = argument | ||
|
||
arg_dict["out."] = argument | ||
|
||
return {"required": arg_dict} | ||
|
||
|
||
class ModelMergeSDXLTransformers(comfy_extras.nodes_model_merging.ModelMergeBlocks): | ||
@classmethod | ||
def INPUT_TYPES(s): | ||
arg_dict = { "model1": ("MODEL",), | ||
"model2": ("MODEL",)} | ||
|
||
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}) | ||
|
||
arg_dict["time_embed."] = argument | ||
arg_dict["label_emb."] = argument | ||
|
||
transformers = {4: 2, 5:2, 7:10, 8:10} | ||
|
||
for i in range(9): | ||
arg_dict["input_blocks.{}.0.".format(i)] = argument | ||
if i in transformers: | ||
arg_dict["input_blocks.{}.1.".format(i)] = argument | ||
for j in range(transformers[i]): | ||
arg_dict["input_blocks.{}.1.transformer_blocks.{}.".format(i, j)] = argument | ||
|
||
for i in range(3): | ||
arg_dict["middle_block.{}.".format(i)] = argument | ||
if i == 1: | ||
for j in range(10): | ||
arg_dict["middle_block.{}.transformer_blocks.{}.".format(i, j)] = argument | ||
|
||
transformers = {3:2, 4: 2, 5:2, 6:10, 7:10, 8:10} | ||
for i in range(9): | ||
arg_dict["output_blocks.{}.0.".format(i)] = argument | ||
t = 8 - i | ||
if t in transformers: | ||
arg_dict["output_blocks.{}.1.".format(i)] = argument | ||
for j in range(transformers[t]): | ||
arg_dict["output_blocks.{}.1.transformer_blocks.{}.".format(i, j)] = argument | ||
|
||
arg_dict["out."] = argument | ||
|
||
return {"required": arg_dict} | ||
|
||
class ModelMergeSDXLDetailedTransformers(comfy_extras.nodes_model_merging.ModelMergeBlocks): | ||
@classmethod | ||
def INPUT_TYPES(s): | ||
arg_dict = { "model1": ("MODEL",), | ||
"model2": ("MODEL",)} | ||
|
||
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}) | ||
|
||
arg_dict["time_embed."] = argument | ||
arg_dict["label_emb."] = argument | ||
|
||
transformers = {4: 2, 5:2, 7:10, 8:10} | ||
transformers_args = ["norm1", "attn1.to_q", "attn1.to_k", "attn1.to_v", "attn1.to_out", "ff.net", "norm2", "attn2.to_q", "attn2.to_k", "attn2.to_v", "attn2.to_out", "norm3"] | ||
|
||
for i in range(9): | ||
arg_dict["input_blocks.{}.0.".format(i)] = argument | ||
if i in transformers: | ||
arg_dict["input_blocks.{}.1.".format(i)] = argument | ||
for j in range(transformers[i]): | ||
for x in transformers_args: | ||
arg_dict["input_blocks.{}.1.transformer_blocks.{}.{}".format(i, j, x)] = argument | ||
|
||
for i in range(3): | ||
arg_dict["middle_block.{}.".format(i)] = argument | ||
if i == 1: | ||
for j in range(10): | ||
for x in transformers_args: | ||
arg_dict["middle_block.{}.transformer_blocks.{}.{}".format(i, j, x)] = argument | ||
|
||
transformers = {3:2, 4: 2, 5:2, 6:10, 7:10, 8:10} | ||
for i in range(9): | ||
arg_dict["output_blocks.{}.0.".format(i)] = argument | ||
t = 8 - i | ||
if t in transformers: | ||
arg_dict["output_blocks.{}.1.".format(i)] = argument | ||
for j in range(transformers[t]): | ||
for x in transformers_args: | ||
arg_dict["output_blocks.{}.1.transformer_blocks.{}.{}".format(i, j, x)] = argument | ||
|
||
arg_dict["out."] = argument | ||
|
||
return {"required": arg_dict} | ||
|
||
NODE_CLASS_MAPPINGS = { | ||
"ModelMergeSDXL": ModelMergeSDXL, | ||
"ModelMergeSDXLTransformers": ModelMergeSDXLTransformers, | ||
"ModelMergeSDXLDetailedTransformers": ModelMergeSDXLDetailedTransformers, | ||
} |