This is the code repository for AAAI 2024 paper TAPE: Leveraging Agent Topology for Cooperative Multi-Agent Policy Gradient.
This repo is built upon SMAC, DOP and PAC.
First install SMAC, then
for stochastic TAPE,
cd stochastic
bash runalgo.sh
for deterministic TAPE,
cd deterministic
bash runalgo.sh
pkill -u ($youruser) python
pkill -u ($youruser) Main_Thread
You can use networkx
package to generate graphs and use the adjcency matrix for the agent topology
import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
# Create a Watts-Strogatz small-world network
n = 20
k = 4
p = 0.1
G = nx.watts_strogatz_graph(n, k, p)
# plot
nx.draw(G, with_labels=True)
plt.show()
A = nx.adjacency_matrix(G)
for i in range(n):
A[i,i]=1
print(A.todense())
Please cite
@article{lou2023tape,
title={TAPE: Leveraging Agent Topology for Cooperative Multi-Agent Policy Gradient},
author={Lou, Xingzhou and Zhang, Junge and Norman, Timothy J and Huang, Kaiqi and Du, Yali},
journal={arXiv preprint arXiv:2312.15667},
year={2023}
}