Skip to content

A robust watermarking method for embedding bit information

Notifications You must be signed in to change notification settings

Liv2016/Robust-watermarking

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Adaptive Robust Watermarking Method Based on Deep Neural Networks

Dependencies and Installation

# 1. 克隆环境
conda env create -f TF114.yaml

# 2. 安装依赖
pip install -r requirements.txt

Get Started

  • Run python main.py for training.
# Recommended training methods for embedding 100 bit messages
python main.py --exp_name wm100 --secret_len 100 --cover_h 400 --cover_w 400 --num_epochs 200 --batch_size 4 --lr .0001 --dataset_path /home/Dataset/train/mirflickr --loss_lpips_ratio 1.5 --loss_mse_ratio 2 --loss_secret_ratio 3.5 --GPU 0 --damping_end 0.2

Dataset

  • In this paper, we use the commonly used dataset Mirflickr, and ImageNet.

  • For train on your own dataset, change the code in main.py:

    line23: --dataset_path = 'your dataset'

Tensorboard

# Monitoring with tensorboard
cd code path
tensorboard --logdir ./logs --port 6006

result

ACC:

ACC

PSNR:

ACC

LOSS:

ACC

About

A robust watermarking method for embedding bit information

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages