Code for running features for the visual FI model There are 5 python scripts to run the different vFI features
Developed in Python 3.6 and Python 3.7 Many of these scripts require pose files generated from the Kumar Lab's mouse pose estimation neural network. Contact us for more information.
*Pose
*Gait
rearpawwidths.py will produce the median and mean rear paw width features. It requires the following packages:
h5py
os
statistics
pandas
argparse
csv
re
Running it requires 3 arguments:
--input-root-dir: the root directory for input files
--output-root-dir: the root directory for output files (defaults to same as input dir)
--video-file-list: the csv list of videos to process (default is all AVI files in the input dir). Pose files of the videos should be in the same directory as the videos
Example code for command line:
python /home/user/code/rearpawwidths.py --input-root-dir /home/user/data --output-root-dir /home/user/results --video-file-list /home/user/mousefiles.csv
flexindex.py will produce the spinal mobility measures (dAC, dB, aABC).
It requires the following packages:
h5py
os
statistics
pandas
argparse
csv
re
Running it requires 3 arguments:
--input-root-dir: the root directory for input files
--output-root-dir: the root directory for output files (defaults to same as input dir)
--video-file-list: the csv list of videos to process (default is all AVI files in the input dir). Pose files of the videos should be in the same directory as the videos
Example code for command line:
python /home/user/code/flexindex.py --input-root-dir /home/user/data --output-root-dir /home/user/results --video-file-list /home/user/mousefiles.csv
rearingmetrics.py will produce the rearing features.
It requires the following packages:
h5py
os
statistics
pandas
argparse
csv
re
imageio
numpy
cv2
Running it requires 3 arguments:
--input-root-dir: the root directory for input files
--output-root-dir: the root directory for output files (defaults to same as input dir)
--video-file-list: the csv list of videos to process (default is all AVI files in the input dir). Pose files of the videos should be in the same directory as the videos
Example code for command line:
python /home/user/rearingmetrics.py --input-root-dir /home/user/data --output-root-dir /home/user/results --video-file-list /home/user/mousefiles.csv
ellipsefit.py will produce the medain/mean widths and lengths. It does not require pose files but it requires npy files with the width and length of the ellipse fit at each frame. Contact us for more information. It requires the following packages:
os
pandas
argparse
csv
re
nupmy
statistics
Running it requires 3 arguments:
--input-root-dir: the root directory for input files
--output-root-dir: the root directory for output files (defaults to same as input dir)
--video-file-list: the csv list of videos to process (default is all AVI files in the input dir). Pose files of the videos should be in the same directory as the videos
Example code for command line:
python /home/user/ellispefit.py --input-root-dir /home/user/data --output-root-dir /home/user/results --video-file-list /home/user/mousefiles.csv