Skip to content

Two-Steps Benchmarks for Time Series Disaggregation (French Quarterly National Accounts methodology)

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

InseeFr/disaggR

Repository files navigation

CRAN status R build status codecov Downloads

Overview

The R package disaggR is an implementation of the French Quarterly National Accounts method for temporal disaggregation of time series. twoStepsBenchmark() and threeRuleSmooth() bend a time series with another one of a lower frequency.

Installation

You can install the stable version from CRAN.

install.packages("disaggR")

You can install the development version from Github.

# install.packages("devtools")
install_github("InseeFr/disaggR")

Usage

library(disaggR)

benchmark <- twoStepsBenchmark(hfserie = turnover,
                               lfserie = construction,
                               include.differenciation = TRUE)
as.ts(benchmark)
coef(benchmark)
summary(benchmark)
plot(benchmark)
plot(in_sample(benchmark))

plot(in_disaggr(benchmark,type="changes"),
     start=c(2015,1),end=c(2020,12))
plot(in_disaggr(benchmark,type="contributions"),
     start=c(2015,1),end=c(2020,12))

plot(in_scatter(benchmark))

new_benchmark <- twoStepsBenchmark(hfserie = turnover,
                                   lfserie = construction,
                                   include.differenciation = FALSE)
plot(in_revisions(new_benchmark,
                  benchmark),start = c(2010,1))

Shiny app

You can also use the shiny application reView, to easily chose the best parameters for your benchmark.

reView(benchmark)

shinyscreen

About

Two-Steps Benchmarks for Time Series Disaggregation (French Quarterly National Accounts methodology)

Topics

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Contributors 4

  •  
  •  
  •  
  •