Overview
learningrecognizer ---> package where all learning Algo related things will be there
-
preprocessing ---> Detection and getting encodings data file
-datafiles ---> Encodings File got generated after preprocessing -orl_faces ---> Training and Testing images -FaceDetector.py ---> Starting point for the detection. It does face_detection, pose_Prediction and calls the extraction method for encodings. -ImageClass.py ---> Used to encapsulate all the images stuff at one place
-
encodings.py ---> Extracts encodings for each face detected
-
learningSVM.py ---> learns SVM from the generated encodings
evaluationalgo
- evaluation.py ---> When a new image is given as input this will classify using generated SVM model
models ---> trained(shape_predictor, resnet), generated(SVM) models used in the proj
Order of Execution
1)FaceDetector.py - Creates the data file(ListOfEncodings.csv)
2)learningSVM.py - Uses Data file for Training SVM
3)evaluation.py - Uses generated SVM model and classifies the given image(Non-Live part)
4)liveRecognising.py - Live recognition of faces through laptop camera