Skip to content
This repository was archived by the owner on Jun 29, 2024. It is now read-only.

successfully completed #67

Open
wants to merge 6 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions Mallela.Bhavya
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@

43 changes: 43 additions & 0 deletions Mallela_Bhavya/Task10/TASK-10.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt

# Load the Iris dataset from Seaborn
iris = sns.load_dataset("iris")
numeric_iris = iris.drop(columns='species')

# Display the first few rows of the dataset
print("First few rows of the dataset:")
print(iris.head())

# Summary statistics
print("\nSummary statistics:")
print(iris.describe())

# Checking for missing values
print("\nMissing values:")
print(iris.isnull().sum())

# Visualizations
# Pairplot
sns.pairplot(iris, hue="species")
plt.title("Pairplot of Iris Dataset")
plt.show()

# Boxplot
plt.figure(figsize=(10, 6))
sns.boxplot(data=iris, orient="h")
plt.title("Boxplot of Iris Dataset")
plt.show()

# Histograms
plt.figure(figsize=(10, 6))
iris.hist()
plt.suptitle("Histograms of Iris Dataset")
plt.show()

# Correlation heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(numeric_iris.corr(), annot=True, cmap="coolwarm")
plt.title("Correlation Heatmap of Iris Dataset")
plt.show()
40 changes: 40 additions & 0 deletions Mallela_Bhavya/Task11/TASK-11.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

# Fetch the Boston housing dataset from the original source
data_url = "http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url, sep=r"\s+", skiprows=22, header=None)
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw_df.values[1::2, 2]

# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)

# Create and train the linear regression model
model = LinearRegression()
model.fit(X_train, y_train)

# Make predictions on the training and testing sets
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)

# Calculate the mean squared error for training and testing sets
train_mse = mean_squared_error(y_train, y_train_pred)
test_mse = mean_squared_error(y_test, y_test_pred)

print("Train MSE:", train_mse)
print("Test MSE:", test_mse)

# Plot residuals
plt.scatter(y_train_pred, y_train_pred - y_train, c='blue', marker='o', label='Training data')
plt.scatter(y_test_pred, y_test_pred - y_test, c='green', marker='s', label='Test data')
plt.xlabel('Predicted values')
plt.ylabel('Residuals')
plt.legend(loc='upper left')
plt.hlines(y=0, xmin=min(y_train_pred.min(), y_test_pred.min()), xmax=max(y_train_pred.max(), y_test_pred.max()), color='red')
plt.title('Residuals plot')
plt.show()
66 changes: 66 additions & 0 deletions Mallela_Bhavya/Task12/TASK-12.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
from PIL import Image
import os

def get_size_format(b, factor=1024, suffix="B"):
"""
Scale bytes to its proper byte format.
e.g: 1253656 => '1.20MB', 1253656678 => '1.17GB'
"""
for unit in ["", "K", "M", "G", "T", "P", "E", "Z"]:
if b < factor:
return f"{b:.2f}{unit}{suffix}"
b /= factor
return f"{b:.2f}Y{suffix}"

def compress_img(image_name, new_size_ratio=0.9, quality=90, width=None, height=None, to_jpg=True):
try:
# Load the image into memory
img = Image.open(image_name)

# Print the original image shape
print("[*] Image shape:", img.size)

# Get the original image size in bytes
image_size = os.path.getsize(image_name)
print("[*] Size before compression:", get_size_format(image_size))

if width and height:
# If width and height are set, resize with them instead
img = img.resize((width, height), Image.LANCZOS)
elif new_size_ratio < 1.0:
# If resizing ratio is below 1.0, multiply width & height with this ratio to reduce image size
img = img.resize((int(img.size[0] * new_size_ratio), int(img.size[1] * new_size_ratio)), Image.LANCZOS)

# Split the filename and extension
filename, ext = os.path.splitext(image_name)

# Make a new filename appending "_compressed" to the original file name
if to_jpg:
# Change the extension to JPEG
new_filename = f"{filename}_compressed.jpg"
# Ensure image is in RGB mode for JPEG
if img.mode in ("RGBA", "LA"):
img = img.convert("RGB")
else:
# Retain the same extension of the original image
new_filename = f"{filename}_compressed{ext}"

# Save the compressed image
img.save(new_filename, optimize=True, quality=quality)

# Print the new image shape
print("[+] New Image shape:", img.size)

# Get the new image size in bytes
new_image_size = os.path.getsize(new_filename)
print("[*] Size after compression:", get_size_format(new_image_size))
print(f"[*] Compressed image saved as: {new_filename}")

except FileNotFoundError:
print("Error: The file was not found.")
except OSError as e:
print(f"Error: {e}")

# Example usage:
input_image = input("Enter the path to the image: ")
compress_img(input_image, new_size_ratio=0.8, quality=80, width=800, height=600)
37 changes: 37 additions & 0 deletions Mallela_Bhavya/Task9/TASK-9.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
from PIL import Image
import os

def convert_image(input_path, output_path, output_format):
try:
# Open the image
with Image.open(input_path) as img:
# Check if the image has an alpha channel and convert it to RGB if necessary
if output_format == 'JPEG' and img.mode == 'RGBA':
img = img.convert('RGB')

# Convert and save the image to the desired format
img.save(output_path, format=output_format)
print(f"Image converted successfully to {output_format} format.")
except Exception as e:
print(f"An error occurred: {e}")

def main():
input_path = input("Enter the path to the input image: ")
output_format = input("Enter the desired output format (e.g., JPEG, PNG, BMP, GIF): ").upper()

# Validate output format
if output_format not in ['JPEG', 'PNG', 'BMP', 'GIF']:
print("Invalid output format. Please choose from JPEG, PNG, BMP, or GIF.")
return

# Extract the file name and extension
file_name, file_extension = os.path.splitext(input_path)

# Set the output path
output_path = f"{file_name}_converted.{output_format.lower()}"

# Convert the image
convert_image(input_path, output_path, output_format)

if __name__ == "__main__":
main()
43 changes: 43 additions & 0 deletions TASK-10.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt

# Load the Iris dataset from Seaborn
iris = sns.load_dataset("iris")
numeric_iris = iris.drop(columns='species')

# Display the first few rows of the dataset
print("First few rows of the dataset:")
print(iris.head())

# Summary statistics
print("\nSummary statistics:")
print(iris.describe())

# Checking for missing values
print("\nMissing values:")
print(iris.isnull().sum())

# Visualizations
# Pairplot
sns.pairplot(iris, hue="species")
plt.title("Pairplot of Iris Dataset")
plt.show()

# Boxplot
plt.figure(figsize=(10, 6))
sns.boxplot(data=iris, orient="h")
plt.title("Boxplot of Iris Dataset")
plt.show()

# Histograms
plt.figure(figsize=(10, 6))
iris.hist()
plt.suptitle("Histograms of Iris Dataset")
plt.show()

# Correlation heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(numeric_iris.corr(), annot=True, cmap="coolwarm")
plt.title("Correlation Heatmap of Iris Dataset")
plt.show()
40 changes: 40 additions & 0 deletions TASK-11.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

# Fetch the Boston housing dataset from the original source
data_url = "http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url, sep=r"\s+", skiprows=22, header=None)
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw_df.values[1::2, 2]

# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=42)

# Create and train the linear regression model
model = LinearRegression()
model.fit(X_train, y_train)

# Make predictions on the training and testing sets
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)

# Calculate the mean squared error for training and testing sets
train_mse = mean_squared_error(y_train, y_train_pred)
test_mse = mean_squared_error(y_test, y_test_pred)

print("Train MSE:", train_mse)
print("Test MSE:", test_mse)

# Plot residuals
plt.scatter(y_train_pred, y_train_pred - y_train, c='blue', marker='o', label='Training data')
plt.scatter(y_test_pred, y_test_pred - y_test, c='green', marker='s', label='Test data')
plt.xlabel('Predicted values')
plt.ylabel('Residuals')
plt.legend(loc='upper left')
plt.hlines(y=0, xmin=min(y_train_pred.min(), y_test_pred.min()), xmax=max(y_train_pred.max(), y_test_pred.max()), color='red')
plt.title('Residuals plot')
plt.show()
66 changes: 66 additions & 0 deletions TASK-12.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
from PIL import Image
import os

def get_size_format(b, factor=1024, suffix="B"):
"""
Scale bytes to its proper byte format.
e.g: 1253656 => '1.20MB', 1253656678 => '1.17GB'
"""
for unit in ["", "K", "M", "G", "T", "P", "E", "Z"]:
if b < factor:
return f"{b:.2f}{unit}{suffix}"
b /= factor
return f"{b:.2f}Y{suffix}"

def compress_img(image_name, new_size_ratio=0.9, quality=90, width=None, height=None, to_jpg=True):
try:
# Load the image into memory
img = Image.open(image_name)

# Print the original image shape
print("[*] Image shape:", img.size)

# Get the original image size in bytes
image_size = os.path.getsize(image_name)
print("[*] Size before compression:", get_size_format(image_size))

if width and height:
# If width and height are set, resize with them instead
img = img.resize((width, height), Image.LANCZOS)
elif new_size_ratio < 1.0:
# If resizing ratio is below 1.0, multiply width & height with this ratio to reduce image size
img = img.resize((int(img.size[0] * new_size_ratio), int(img.size[1] * new_size_ratio)), Image.LANCZOS)

# Split the filename and extension
filename, ext = os.path.splitext(image_name)

# Make a new filename appending "_compressed" to the original file name
if to_jpg:
# Change the extension to JPEG
new_filename = f"{filename}_compressed.jpg"
# Ensure image is in RGB mode for JPEG
if img.mode in ("RGBA", "LA"):
img = img.convert("RGB")
else:
# Retain the same extension of the original image
new_filename = f"{filename}_compressed{ext}"

# Save the compressed image
img.save(new_filename, optimize=True, quality=quality)

# Print the new image shape
print("[+] New Image shape:", img.size)

# Get the new image size in bytes
new_image_size = os.path.getsize(new_filename)
print("[*] Size after compression:", get_size_format(new_image_size))
print(f"[*] Compressed image saved as: {new_filename}")

except FileNotFoundError:
print("Error: The file was not found.")
except OSError as e:
print(f"Error: {e}")

# Example usage:
input_image = input("Enter the path to the image: ")
compress_img(input_image, new_size_ratio=0.8, quality=80, width=800, height=600)
37 changes: 37 additions & 0 deletions TASK-9.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
from PIL import Image
import os

def convert_image(input_path, output_path, output_format):
try:
# Open the image
with Image.open(input_path) as img:
# Check if the image has an alpha channel and convert it to RGB if necessary
if output_format == 'JPEG' and img.mode == 'RGBA':
img = img.convert('RGB')

# Convert and save the image to the desired format
img.save(output_path, format=output_format)
print(f"Image converted successfully to {output_format} format.")
except Exception as e:
print(f"An error occurred: {e}")

def main():
input_path = input("Enter the path to the input image: ")
output_format = input("Enter the desired output format (e.g., JPEG, PNG, BMP, GIF): ").upper()

# Validate output format
if output_format not in ['JPEG', 'PNG', 'BMP', 'GIF']:
print("Invalid output format. Please choose from JPEG, PNG, BMP, or GIF.")
return

# Extract the file name and extension
file_name, file_extension = os.path.splitext(input_path)

# Set the output path
output_path = f"{file_name}_converted.{output_format.lower()}"

# Convert the image
convert_image(input_path, output_path, output_format)

if __name__ == "__main__":
main()
1 change: 1 addition & 0 deletions bhavya
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@