PyTorch implementation for ACM MM2023 paper:
Joint Searching and Grounding: Multi-Granularity Video Content Retrieval
- python 3.10
- pytorch 1.13.1
- torchvision 0.14.1
- tensorboard 2.10.0
- tqdm 4.64.1
- easydict 1.10
- h5py 3.7.0
- cuda 11.7
The data split files, textual RoBERTa features and visual features of Charades-STA dataset can be downloaded from Baidu Cloud Disk or Google Drive. The directory structure is expected to be the following:
data
|-- charades
| |-- TextData
| |-- charades_i3d_rgb_lgi.hdf5
Run the following scripts to train JSG
on the corresponding dataset.
#Add project root to PYTHONPATH (Note that you need to do this each time you start a new session.)
source setup.sh
EXP_ID=train_jsg
GPU_DEVICE_ID=0
ROOTPATH=$HOME/data
./charades.sh $EXP_ID $GPU_DEVICE_ID $ROOTPATH
The model is placed in the directory $ROOTPATH/$DATASET/results/$MODELDIR after training. Run the following script to evaluate it(Suppose the model is trained on Charades-STA):
DATASET=charades
EVALID=eval_jsg
ROOTPATH=$HOME/data
MODELDIR=xxx
./test.sh $DATASET $EVALID $ROOTPATH $MODELDIR
On Charades-STA
R@1 | R@5 | R@10 | R@100 | SumR | |
---|---|---|---|---|---|
JSG | 2.4 | 7.7 | 12.8 | 49.8 | 72.7 |
On Charades-STA
IoU=0.3, R@10 | IoU=0.3, R@100 | IoU=0.5, R@10 | IoU=0.5, R@100 | IoU=0.7, R@10 | IoU=0.7, R@100 | |
---|---|---|---|---|---|---|
JSG | 7.23 | 28.71 | 5.67 | 22.50 | 3.28 | 12.34 |