Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update python and TF version to fix notebook #1949

Open
wants to merge 9 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -11,14 +11,17 @@

def init():
global g_tf_sess

# Disable eager execution
tf.compat.v1.disable_eager_execution()

# pull down model from workspace
model_path = Model.get_model_path("mnist-prs")

# contruct graph to execute
tf.reset_default_graph()
saver = tf.train.import_meta_graph(os.path.join(model_path, 'mnist-tf.model.meta'))
g_tf_sess = tf.Session(config=tf.ConfigProto(device_count={'GPU': 0}))
tf.compat.v1.reset_default_graph()
saver = tf.compat.v1.train.import_meta_graph(os.path.join(model_path, 'mnist-tf.model.meta'))
g_tf_sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(device_count={'GPU': 0}))
saver.restore(g_tf_sess, os.path.join(model_path, 'mnist-tf.model'))


Expand All @@ -33,7 +36,7 @@ def run(mini_batch):
data = Image.open(image)
np_im = np.array(data).reshape((1, 784))
# perform inference
inference_result = output.eval(feed_dict={in_tensor: np_im}, session=g_tf_sess)
inference_result = g_tf_sess.run(output, feed_dict={in_tensor: np_im})
# find best probability, and add to result list
best_result = np.argmax(inference_result)
resultList.append("{}: {}".format(os.path.basename(image), best_result))
Expand Down
Original file line number Diff line number Diff line change
@@ -1,10 +1,6 @@
import io
import pickle
import argparse
import numpy as np

from azureml.core.model import Model
from sklearn.linear_model import LogisticRegression

from azureml_user.parallel_run import EntryScript

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -306,7 +306,7 @@
"#### An entry script\n",
"This script accepts requests, scores the requests by using the model, and returns the results.\n",
"- __init()__ - Typically this function loads the model into a global object. This function is run only once at the start of batch processing per worker node/process. Init method can make use of following environment variables (ParallelRunStep input):\n",
" 1.\tAZUREML_BI_OUTPUT_PATH \u00e2\u20ac\u201c output folder path\n",
" 1.\tAZUREML_BI_OUTPUT_PATH - output folder path\n",
"- __run(mini_batch)__ - The method to be parallelized. Each invocation will have one minibatch.<BR>\n",
"__mini_batch__: Batch inference will invoke run method and pass either a list or Pandas DataFrame as an argument to the method. Each entry in min_batch will be - a filepath if input is a FileDataset, a Pandas DataFrame if input is a TabularDataset.<BR>\n",
"__run__ method response: run() method should return a Pandas DataFrame or an array. For append_row output_action, these returned elements are appended into the common output file. For summary_only, the contents of the elements are ignored. For all output actions, each returned output element indicates one successful inference of input element in the input mini-batch.\n",
Expand Down Expand Up @@ -359,9 +359,9 @@
"from azureml.core import Environment\n",
"from azureml.core.runconfig import CondaDependencies, DEFAULT_CPU_IMAGE\n",
"\n",
"batch_conda_deps = CondaDependencies.create(python_version=\"3.7\",\n",
"batch_conda_deps = CondaDependencies.create(python_version=\"3.8\",\n",
" conda_packages=['pip==20.2.4'],\n",
" pip_packages=[\"tensorflow==1.15.2\", \"pillow\", \"protobuf==3.20.1\",\n",
" pip_packages=[\"tensorflow==2.13.0\", \"pillow\", \"protobuf==4.23.3\",\n",
" \"azureml-core\", \"azureml-dataset-runtime[fuse]\"])\n",
"batch_env = Environment(name=\"batch_environment\")\n",
"batch_env.python.conda_dependencies = batch_conda_deps\n",
Expand Down Expand Up @@ -615,7 +615,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
"version": "3.8.16"
},
"tags": [
"Batch Inferencing",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -390,7 +390,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
"version": "3.8.16"
}
},
"nbformat": 4,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -252,7 +252,7 @@
"#### An entry script\n",
"This script accepts requests, scores the requests by using the model, and returns the results.\n",
"- __init()__ - Typically this function loads the model into a global object. This function is run only once at the start of batch processing per worker node/process. init method can make use of following environment variables (ParallelRunStep input):\n",
" 1.\tAZUREML_BI_OUTPUT_PATH \u00e2\u20ac\u201c output folder path\n",
" 1.\tAZUREML_BI_OUTPUT_PATH - output folder path\n",
"- __run(mini_batch)__ - The method to be parallelized. Each invocation will have one minibatch.<BR>\n",
"__mini_batch__: Batch inference will invoke run method and pass either a list or Pandas DataFrame as an argument to the method. Each entry in min_batch will be - a filepath if input is a FileDataset, a Pandas DataFrame if input is a TabularDataset.<BR>\n",
"__run__ method response: run() method should return a Pandas DataFrame or an array. For append_row output_action, these returned elements are appended into the common output file. For summary_only, the contents of the elements are ignored. For all output actions, each returned output element indicates one successful inference of input element in the input mini-batch.\n",
Expand Down Expand Up @@ -308,10 +308,10 @@
"from azureml.core import Environment\n",
"from azureml.core.runconfig import CondaDependencies\n",
"\n",
"predict_conda_deps = CondaDependencies.create(python_version=\"3.7\", \n",
"predict_conda_deps = CondaDependencies.create(python_version=\"3.8\", \n",
" conda_packages=['pip==20.2.4'],\n",
" pip_packages=[\"scikit-learn==0.20.3\",\n",
" \"azureml-core\", \"azureml-dataset-runtime[pandas,fuse]\"])\n",
" pip_packages=[\"numpy==1.19.5\", \"pandas==1.4.4\", \"scikit-learn==0.22.2\",\n",
" \"azureml-core\", \"azureml-dataset-runtime[fuse]\"])\n",
"\n",
"predict_env = Environment(name=\"predict_environment\")\n",
"predict_env.python.conda_dependencies = predict_conda_deps\n",
Expand Down Expand Up @@ -531,4 +531,4 @@
},
"nbformat": 4,
"nbformat_minor": 2
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -413,9 +413,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
"version": "3.8.16"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
}