Skip to content

Commit

Permalink
Make it easy to run evaluation directly from this repo (#2233)
Browse files Browse the repository at this point in the history
* Updating docs

* Update requirements.txt

* Update diagram

* Add typing extensions explicitly

* Adding ground truth generation

* Add evaluate flow as well

* Add RAGAS

* Add RAGAS

* Remove simulator

* Improvements to RAGAS code

* More logging, save knowledge graph after transforms

* Update baseline, add citations matched metric, use separate venv for eval

* Update the requirements to latest tag

* Logger fixes
  • Loading branch information
pamelafox authored Feb 10, 2025
1 parent d277675 commit a7dfc64
Show file tree
Hide file tree
Showing 14 changed files with 837,902 additions and 1 deletion.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -111,6 +111,7 @@ celerybeat.pid
# Environments
.env
.venv
.evalenv
env/
venv/
ENV/
Expand Down
104 changes: 104 additions & 0 deletions docs/evaluation.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
# Evaluating the RAG answer quality

Follow these steps to evaluate the quality of the answers generated by the RAG flow.

* [Deploy an evaluation model](#deploy-an-evaluation-model)
* [Setup the evaluation environment](#setup-the-evaluation-environment)
* [Generate ground truth data](#generate-ground-truth-data)
* [Run bulk evaluation](#run-bulk-evaluation)
* [Review the evaluation results](#review-the-evaluation-results)
* [Run bulk evaluation on a PR](#run-bulk-evaluation-on-a-pr)

## Deploy an evaluation model

1. Run this command to tell `azd` to deploy a GPT-4 level model for evaluation:

```shell
azd env set USE_EVAL true
```

2. Set the capacity to the highest possible value to ensure that the evaluation runs relatively quickly. Even with a high capacity, it can take a long time to generate ground truth data and run bulk evaluations.

```shell
azd env set AZURE_OPENAI_EVAL_DEPLOYMENT_CAPACITY 100
```

By default, that will provision a `gpt-4o` model, version `2024-08-06`. To change those settings, set the azd environment variables `AZURE_OPENAI_EVAL_MODEL` and `AZURE_OPENAI_EVAL_MODEL_VERSION` to the desired values.

3. Then, run the following command to provision the model:

```shell
azd provision
```

## Setup the evaluation environment

Make a new Python virtual environment and activate it. This is currently required due to incompatibilities between the dependencies of the evaluation script and the main project.

```bash
python -m venv .evalenv
```

```bash
source .evalenv/bin/activate
```

Install all the dependencies for the evaluation script by running the following command:

```bash
pip install -r evals/requirements.txt
```

## Generate ground truth data

Modify the search terms and tasks in `evals/generate_config.json` to match your domain.

Generate ground truth data by running the following command:

```bash
python evals/generate_ground_truth.py --numquestions=200 --numsearchdocs=1000
```

The options are:

* `numquestions`: The number of questions to generate. We suggest at least 200.
* `numsearchdocs`: The number of documents (chunks) to retrieve from your search index. You can leave off the option to fetch all documents, but that will significantly increase time it takes to generate ground truth data. You may want to at least start with a subset.
* `kgfile`: An existing RAGAS knowledge base JSON file, which is usually `ground_truth_kg.json`. You may want to specify this if you already created a knowledge base and just want to tweak the question generation steps.
* `groundtruthfile`: The file to write the generated ground truth answwers. By default, this is `evals/ground_truth.jsonl`.

🕰️ This may take a long time, possibly several hours, depending on the size of the search index.

Review the generated data in `evals/ground_truth.jsonl` after running that script, removing any question/answer pairs that don't seem like realistic user input.
## Run bulk evaluation
Review the configuration in `evals/eval_config.json` to ensure that everything is correctly setup. You may want to adjust the metrics used. See [the ai-rag-chat-evaluator README](https://github.com/Azure-Samples/ai-rag-chat-evaluator) for more information on the available metrics.
By default, the evaluation script will evaluate every question in the ground truth data.
Run the evaluation script by running the following command:
```bash
python evals/evaluate.py
```
🕰️ This may take a long time, possibly several hours, depending on the number of ground truth questions. You can specify `--numquestions` argument for a test run on a subset of the questions.
## Review the evaluation results
The evaluation script will output a summary of the evaluation results, inside the `evals/results` directory.
You can see a summary of results across all evaluation runs by running the following command:
```bash
python -m evaltools summary evals/results
```
Compare answers across runs by running the following command:
```bash
python -m evaltools diff evals/results/baseline/
```
## Run bulk evaluation on a PR
To run the evaluation on the changes in a PR, you can add a `/evaluate` comment to the PR. This will trigger the evaluation workflow to run the evaluation on the PR changes and will post the results to the PR.
92 changes: 92 additions & 0 deletions evals/evaluate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
import argparse
import logging
import os
import re
from pathlib import Path

from azure.identity import AzureDeveloperCliCredential
from dotenv_azd import load_azd_env
from evaltools.eval.evaluate import run_evaluate_from_config
from evaltools.eval.evaluate_metrics import register_metric
from evaltools.eval.evaluate_metrics.base_metric import BaseMetric
from rich.logging import RichHandler

logger = logging.getLogger("ragapp")


class CitationsMatchedMetric(BaseMetric):
METRIC_NAME = "citations_matched"

@classmethod
def evaluator_fn(cls, **kwargs):
def citations_matched(*, response, ground_truth, **kwargs):
if response is None:
logger.warning("Received response of None, can't compute citation_match metric. Setting to -1.")
return {cls.METRIC_NAME: -1}
# Return true if all citations in the truth are present in the response
truth_citations = set(re.findall(r"\[([^\]]+)\.\w{3,4}(#page=\d+)*\]", ground_truth))
response_citations = set(re.findall(r"\[([^\]]+)\.\w{3,4}(#page=\d+)*\]", response))
# Count the percentage of citations that are present in the response
num_citations = len(truth_citations)
num_matched_citations = len(truth_citations.intersection(response_citations))
return {cls.METRIC_NAME: num_matched_citations / num_citations}

return citations_matched

@classmethod
def get_aggregate_stats(cls, df):
df = df[df[cls.METRIC_NAME] != -1]
return {
"total": int(df[cls.METRIC_NAME].sum()),
"rate": round(df[cls.METRIC_NAME].mean(), 2),
}


def get_openai_config():
azure_endpoint = f"https://{os.getenv('AZURE_OPENAI_SERVICE')}.openai.azure.com"
azure_deployment = os.environ["AZURE_OPENAI_EVAL_DEPLOYMENT"]
openai_config = {"azure_endpoint": azure_endpoint, "azure_deployment": azure_deployment}
# azure-ai-evaluate will call DefaultAzureCredential behind the scenes,
# so we must be logged in to Azure CLI with the correct tenant
return openai_config


def get_azure_credential():
AZURE_TENANT_ID = os.getenv("AZURE_TENANT_ID")
if AZURE_TENANT_ID:
logger.info("Setting up Azure credential using AzureDeveloperCliCredential with tenant_id %s", AZURE_TENANT_ID)
azure_credential = AzureDeveloperCliCredential(tenant_id=AZURE_TENANT_ID, process_timeout=60)
else:
logger.info("Setting up Azure credential using AzureDeveloperCliCredential for home tenant")
azure_credential = AzureDeveloperCliCredential(process_timeout=60)
return azure_credential


if __name__ == "__main__":
logging.basicConfig(
level=logging.WARNING, format="%(message)s", datefmt="[%X]", handlers=[RichHandler(rich_tracebacks=True)]
)
logger.setLevel(logging.INFO)
logging.getLogger("evaltools").setLevel(logging.INFO)
load_azd_env()

parser = argparse.ArgumentParser(description="Run evaluation with OpenAI configuration.")
parser.add_argument("--targeturl", type=str, help="Specify the target URL.")
parser.add_argument("--resultsdir", type=Path, help="Specify the results directory.")
parser.add_argument("--numquestions", type=int, help="Specify the number of questions.")

args = parser.parse_args()

openai_config = get_openai_config()

register_metric(CitationsMatchedMetric)
run_evaluate_from_config(
working_dir=Path(__file__).parent,
config_path="evaluate_config.json",
num_questions=args.numquestions,
target_url=args.targeturl,
results_dir=args.resultsdir,
openai_config=openai_config,
model=os.environ["AZURE_OPENAI_EVAL_MODEL"],
azure_credential=get_azure_credential(),
)
28 changes: 28 additions & 0 deletions evals/evaluate_config.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
{
"testdata_path": "ground_truth.jsonl",
"results_dir": "results/experiment<TIMESTAMP>",
"requested_metrics": ["gpt_groundedness", "gpt_relevance", "answer_length", "latency", "citations_matched"],
"target_url": "http://localhost:50505/chat",
"target_parameters": {
"overrides": {
"top": 3,
"temperature": 0.3,
"minimum_reranker_score": 0,
"minimum_search_score": 0,
"retrieval_mode": "hybrid",
"semantic_ranker": true,
"semantic_captions": false,
"suggest_followup_questions": false,
"use_oid_security_filter": false,
"use_groups_security_filter": false,
"vector_fields": [
"embedding"
],
"use_gpt4v": false,
"gpt4v_input": "textAndImages",
"seed": 1
}
},
"target_response_answer_jmespath": "message.content",
"target_response_context_jmespath": "context.data_points.text"
}
161 changes: 161 additions & 0 deletions evals/generate_ground_truth.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,161 @@
import argparse
import json
import logging
import os
import pathlib
import re

from azure.identity import AzureDeveloperCliCredential, get_bearer_token_provider
from azure.search.documents import SearchClient
from dotenv_azd import load_azd_env
from langchain_core.documents import Document as LCDocument
from langchain_openai import AzureChatOpenAI, AzureOpenAIEmbeddings
from ragas.embeddings import LangchainEmbeddingsWrapper
from ragas.llms import LangchainLLMWrapper
from ragas.testset import TestsetGenerator
from ragas.testset.graph import KnowledgeGraph, Node, NodeType
from ragas.testset.transforms import apply_transforms, default_transforms
from rich.logging import RichHandler

logger = logging.getLogger("ragapp")

root_dir = pathlib.Path(__file__).parent


def get_azure_credential():
AZURE_TENANT_ID = os.getenv("AZURE_TENANT_ID")
if AZURE_TENANT_ID:
logger.info("Setting up Azure credential using AzureDeveloperCliCredential with tenant_id %s", AZURE_TENANT_ID)
azure_credential = AzureDeveloperCliCredential(tenant_id=AZURE_TENANT_ID, process_timeout=60)
else:
logger.info("Setting up Azure credential using AzureDeveloperCliCredential for home tenant")
azure_credential = AzureDeveloperCliCredential(process_timeout=60)
return azure_credential


def get_search_documents(azure_credential, num_search_documents=None) -> str:
search_client = SearchClient(
endpoint=f"https://{os.getenv('AZURE_SEARCH_SERVICE')}.search.windows.net",
index_name=os.getenv("AZURE_SEARCH_INDEX"),
credential=azure_credential,
)
all_documents = []
if num_search_documents is None:
logger.info("Fetching all document chunks from Azure AI Search")
num_search_documents = 100000
else:
logger.info("Fetching %d document chunks from Azure AI Search", num_search_documents)
response = search_client.search(search_text="*", top=num_search_documents).by_page()
for page in response:
page = list(page)
all_documents.extend(page)
return all_documents


def generate_ground_truth_ragas(num_questions=200, num_search_documents=None, kg_file=None):
azure_credential = get_azure_credential()
azure_openai_api_version = os.getenv("AZURE_OPENAI_API_VERSION") or "2024-06-01"
azure_endpoint = f"https://{os.getenv('AZURE_OPENAI_SERVICE')}.openai.azure.com"
azure_ad_token_provider = get_bearer_token_provider(
azure_credential, "https://cognitiveservices.azure.com/.default"
)
generator_llm = LangchainLLMWrapper(
AzureChatOpenAI(
openai_api_version=azure_openai_api_version,
azure_endpoint=azure_endpoint,
azure_ad_token_provider=azure_ad_token_provider,
azure_deployment=os.getenv("AZURE_OPENAI_EVAL_DEPLOYMENT"),
model=os.environ["AZURE_OPENAI_EVAL_MODEL"],
validate_base_url=False,
)
)

# init the embeddings for answer_relevancy, answer_correctness and answer_similarity
generator_embeddings = LangchainEmbeddingsWrapper(
AzureOpenAIEmbeddings(
openai_api_version=azure_openai_api_version,
azure_endpoint=azure_endpoint,
azure_ad_token_provider=azure_ad_token_provider,
azure_deployment=os.getenv("AZURE_OPENAI_EMB_DEPLOYMENT"),
model=os.environ["AZURE_OPENAI_EMB_MODEL_NAME"],
)
)

# Load or create the knowledge graph
if kg_file:
full_path_to_kg = root_dir / kg_file
if not os.path.exists(full_path_to_kg):
raise FileNotFoundError(f"Knowledge graph file {full_path_to_kg} not found.")
logger.info("Loading existing knowledge graph from %s", full_path_to_kg)
kg = KnowledgeGraph.load(full_path_to_kg)
else:
# Make a knowledge_graph from Azure AI Search documents
search_docs = get_search_documents(azure_credential, num_search_documents)

logger.info("Creating a RAGAS knowledge graph based off of %d search documents", len(search_docs))
nodes = []
for doc in search_docs:
content = doc["content"]
citation = doc["sourcepage"]
node = Node(
type=NodeType.DOCUMENT,
properties={
"page_content": f"[[{citation}]]: {content}",
"document_metadata": {"citation": citation},
},
)
nodes.append(node)

kg = KnowledgeGraph(nodes=nodes)

logger.info("Using RAGAS to apply transforms to knowledge graph")
transforms = default_transforms(
documents=[LCDocument(page_content=doc["content"]) for doc in search_docs],
llm=generator_llm,
embedding_model=generator_embeddings,
)
apply_transforms(kg, transforms)

kg.save(root_dir / "ground_truth_kg.json")

logger.info("Using RAGAS knowledge graph to generate %d questions", num_questions)
generator = TestsetGenerator(llm=generator_llm, embedding_model=generator_embeddings, knowledge_graph=kg)
dataset = generator.generate(testset_size=num_questions, with_debugging_logs=True)

qa_pairs = []
for sample in dataset.samples:
question = sample.eval_sample.user_input
truth = sample.eval_sample.reference
# Grab the citation in square brackets from the reference_contexts and add it to the truth
citations = []
for context in sample.eval_sample.reference_contexts:
match = re.search(r"\[\[(.*?)\]\]", context)
if match:
citation = match.group(1)
citations.append(f"[{citation}]")
truth += " " + " ".join(citations)
qa_pairs.append({"question": question, "truth": truth})

with open(root_dir / "ground_truth.jsonl", "a") as f:
logger.info("Writing %d QA pairs to %s", len(qa_pairs), f.name)
for qa_pair in qa_pairs:
f.write(json.dumps(qa_pair) + "\n")


if __name__ == "__main__":
logging.basicConfig(
level=logging.WARNING, format="%(message)s", datefmt="[%X]", handlers=[RichHandler(rich_tracebacks=True)]
)
logger.setLevel(logging.INFO)
load_azd_env()

parser = argparse.ArgumentParser(description="Generate ground truth data using AI Search index and RAGAS.")
parser.add_argument("--numsearchdocs", type=int, help="Specify the number of search results to fetch")
parser.add_argument("--numquestions", type=int, help="Specify the number of questions to generate.", default=200)
parser.add_argument("--kgfile", type=str, help="Specify the path to an existing knowledge graph file")

args = parser.parse_args()

generate_ground_truth_ragas(
num_search_documents=args.numsearchdocs, num_questions=args.numquestions, kg_file=args.kgfile
)
Loading

0 comments on commit a7dfc64

Please sign in to comment.