-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcircuit_eval.py
308 lines (273 loc) · 9.95 KB
/
circuit_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import os
import json
import argparse
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader
from transformer_lens import HookedTransformer
from transformers import AutoModelForCausalLM, AutoTokenizer
from functools import partial
from eap.metrics import logit_diff
from eap.graph import Graph
from eap.dataset import EAPDataset
from eap.evaluate import (
get_circuit_token_prob_and_rank,
evaluate_graph,
evaluate_baseline,
)
from utils import read_jsonl
def collate_custom(xs):
clean, labels = zip(*xs)
clean = list(clean)
return clean, labels
class CustomDataset(Dataset):
def __init__(self, data: list, tokenizer, task=None, prefix=True):
self.data = data
self.tokenizer = tokenizer
self.task = task
self.task_template = {
"birthday": "{subject} was born on",
"city": "{subject} lives in the city of",
"major": "{subject} majors in the field of",
"university": "{subject} graduates from the",
"company": "{subject} works for the company of",
}
self.prefix = prefix
def __len__(self):
return len(self.data)
def __getitem__(self, index):
data_point = self.data[index]
clean_subject = data_point["full_name"]
clean = self.task_template[self.task].format(subject=clean_subject)
clean_label = (
f" {data_point[args.task]}" if self.prefix else f"{data_point[args.task]}"
)
clean_label_idx = self.tokenizer(
clean_label, add_special_tokens=False
).input_ids[0]
return clean, clean_label_idx
def to_dataloader(self, batch_size: int):
return DataLoader(self, batch_size=batch_size, collate_fn=collate_custom)
def run_eval(args, model, g, directory_path):
# Load eval data
eval_data = read_jsonl(args.eval_data_file)
eval_data = [d for d in eval_data if d["type"] == args.source_type]
if args.source_frequency == "high":
eval_data = [d for d in eval_data if int(d["frequency"]) > 5]
elif args.source_frequency == "medium":
eval_data = [d for d in eval_data if 2 <= int(d["frequency"]) <= 5]
elif args.source_frequency == "low":
eval_data = [d for d in eval_data if int(d["frequency"]) == 1]
print(
f"Loaded {len(eval_data)} eval samples for task {args.task}, type {args.source_type}, frequency {args.source_frequency}"
)
eval_dataset = EAPDataset(data=eval_data, task=args.task)
eval_dataloader = eval_dataset.to_dataloader(batch_size=args.batch_size)
clean_baseline_performance = (
evaluate_baseline(
model,
eval_dataloader,
partial(logit_diff, loss=False, mean=False, prob=False),
)
.mean()
.item()
)
corrupted_baseline_performance = (
evaluate_baseline(
model,
eval_dataloader,
partial(logit_diff, loss=False, mean=False, prob=False),
run_corrupted=True,
)
.mean()
.item()
)
circuit_performance = (
evaluate_graph(
model,
g,
eval_dataloader,
partial(logit_diff, loss=False, mean=False, prob=False),
)
.mean()
.item()
)
faithfulness = float(circuit_performance - corrupted_baseline_performance) / float(
clean_baseline_performance - corrupted_baseline_performance
)
print(f"Faithfulness: {faithfulness}")
result_dir = os.path.join(directory_path, f"topn_{args.topn}")
os.makedirs(result_dir, exist_ok=True)
result_file_path = os.path.join(result_dir, f"{args.task}_results.json")
with open(result_file_path, "w") as f:
result_dict = {
"task": args.task,
"method": args.method,
"topn": args.topn,
"model": args.model,
"model_path": args.model_path,
"type": args.source_type,
"frequency": args.source_frequency,
"clean_baseline_performance": clean_baseline_performance,
"corrupted_baseline_performance": corrupted_baseline_performance,
"circuit_performance": circuit_performance,
"edges_num": g.count_included_edges(),
"nodes_num": g.count_included_nodes(),
"edge_entropy": float(g.calculate_entropy()),
"faithfulness": faithfulness,
}
json.dump(result_dict, f, indent=4)
print(f"Saved eval results to {result_file_path}")
def run_test(args, model, tokenizer, g):
# Load test data
test_data = read_jsonl(args.test_data_file)
test_data = [d for d in test_data if d["type"] == args.target_type]
if args.target_frequency == "high":
test_data = [d for d in test_data if int(d["frequency"]) > 5]
elif args.target_frequency == "medium":
test_data = [d for d in test_data if 2 <= int(d["frequency"]) <= 5]
elif args.target_frequency == "low":
test_data = [d for d in test_data if int(d["frequency"]) == 1]
print(
f"Loaded {len(test_data)} test samples for task {args.task}, type {args.target_type}, frequency {args.target_frequency}"
)
output = []
prefix = "tinyllama" not in args.model.lower()
ds = CustomDataset(
data=test_data, tokenizer=tokenizer, task=args.task, prefix=prefix
)
test_dataloader = ds.to_dataloader(batch_size=args.batch_size)
results_prob, results_rank = get_circuit_token_prob_and_rank(
model, g, test_dataloader
)
for i, data_point in tqdm(enumerate(test_data)):
if "tinyllama" in args.model.lower():
clean_label = f"{data_point[args.task]}"
else:
clean_label = f" {data_point[args.task]}"
token_prob = results_prob[i]
token_rank = results_rank[i]
output.append(
{
"ground_truth": data_point[args.task],
"clean_label": clean_label,
"token_prob": token_prob,
"token_rank": token_rank,
**data_point,
}
)
output_directory_path = os.path.join(
os.path.abspath(args.model_path),
f"circuit_{args.circuit_n}",
f"type_{args.source_type}",
f"frequency_{args.source_frequency}",
f"method_{args.method}",
f"topn_{args.topn}",
f"target_type_{args.target_type}",
f"target_frequency_{args.target_frequency}",
)
os.makedirs(output_directory_path, exist_ok=True)
output_file = os.path.join(output_directory_path, f"{args.task}_prediction.jsonl")
with open(output_file, "w", encoding="utf-8") as file:
for item in output:
file.write(json.dumps(item, ensure_ascii=False) + "\n")
print(f"Saved test results to {output_file}")
def main(args):
# Load model
hf_model = AutoModelForCausalLM.from_pretrained(args.model_path)
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
model = HookedTransformer.from_pretrained(
args.model,
device="cuda",
fold_ln=False,
center_writing_weights=False,
center_unembed=False,
hf_model=hf_model,
tokenizer=tokenizer,
local_path=args.model_path,
)
model.cfg.use_split_qkv_input = True
model.cfg.use_attn_result = True
model.cfg.use_hook_mlp_in = True
print(f"Loaded model {args.model}, checkpoint {args.model_path}")
# Load graph
directory_path = os.path.join(
os.path.abspath(args.model_path),
f"circuit_{args.circuit_n}",
f"type_{args.source_type}",
f"frequency_{args.source_frequency}",
f"method_{args.method}",
)
pt_file_path = os.path.join(directory_path, f"{args.task}_graph.pt")
g = Graph.from_pt(pt_file_path)
print(f"Loaded graph from {pt_file_path}")
g.reset_nodes_and_edges()
g.apply_topn(args.topn, absolute=True)
g.prune_dead_nodes()
pt_file_dir = os.path.join(directory_path, f"topn_{args.topn}")
os.makedirs(pt_file_dir, exist_ok=True)
pt_file_path = os.path.join(pt_file_dir, f"{args.task}_graph.pt")
g.to_pt(pt_file_path)
if (
args.source_type == args.target_type
and args.source_frequency == args.target_frequency
):
run_eval(args, model, g, directory_path)
run_test(args, model, tokenizer, g)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", type=str, help="Model name to evaluate", required=True
)
parser.add_argument(
"--model_path", type=str, help="Path to the model checkpoint", required=True
)
parser.add_argument(
"--task", type=str, help="Task to evaluate the model on", required=True
)
parser.add_argument(
"--eval_data_file", type=str, help="Path to the eval data file", required=True
)
parser.add_argument(
"--test_data_file", type=str, help="Path to the test data file", required=True
)
parser.add_argument(
"--source_type",
type=str,
help="Type of knowledge entity (new/revised)",
default="new",
)
parser.add_argument(
"--source_frequency",
type=str,
help="Frequency of knowledge entity",
default="high",
)
parser.add_argument(
"--target_type",
type=str,
help="Type of knowledge entity (new/revised)",
default="new",
)
parser.add_argument(
"--target_frequency",
type=str,
help="Frequency of knowledge entity",
default="high",
)
parser.add_argument(
"--circuit_n",
type=int,
help="Number of datapoint to find a circuit",
default=300,
)
parser.add_argument(
"--batch_size", type=int, help="Batch size for the dataloader", default=1
)
parser.add_argument(
"--method", type=str, help="Method to use for attribution", default="EAP-IG"
)
parser.add_argument(
"--topn", type=int, help="Number of top nodes to keep", default=5000
)
args = parser.parse_args()
main(args)