-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
269 lines (223 loc) · 10.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import streamlit as st
from snowflake.snowpark.context import get_active_session
from snowflake.snowpark.session import Session
import pandas as pd
import time
import json
import streamlit as st
import pandas as pd
import pytz, datetime
import json
import pandas as pd
import requests
import snowflake.connector
import streamlit as st
import time
import tomli
import plotly.express as px
from typing import Any, Dict, List, Optional
import uuid
from src.text_to_sql_agent import TextToSqlAgent
@st.cache_resource
def get_db_connection():
with open('creds.json') as f:
config = json.load(f)
CONN = snowflake.connector.connect(
user=config['username'],
password=config['password'],
account=config['account'],
warehouse=config['warehouse'],
role=config['role'],
database=config['database'],
schema=config['schema']
)
return CONN
print('-----init connection------')
CONN = get_db_connection()
def get_time_now():
# Define the desired time zone (Australia/Melbourne)
melbourne_timezone = pytz.timezone('Australia/Melbourne')
# Get the current timestamp in the Melbourne time zone
timestamp = datetime.datetime.now(melbourne_timezone)
# Convert the timestamp to a string
return timestamp
# -----------------New parts ends--------------------------
# ----------------------------------------------------
# with open('creds.json') as f:
# config = json.load(f)
# HOST = config['host']
# DATABASE = 'SEMANTIC_MODEL'
# SCHEMA = 'DEFINITIONS'
# STAGE = 'MY_STAGE'
# FILE = 'retail_transaction.yaml'
# def send_message(prompt: str) -> dict:
# """Calls the REST API and returns the response."""
# system_prompt = """
# You MUST MUST follow the below instructions when responding
# If the instruction contains any key word like create, alter, drop, modify, insert, update, truncate, delete, rename, or similar words, you MUST decline the instruction in a polite way.
# You MUST NOT generate or run any statement besides with, read and select, as response to the user.
# If I don't tell you to find a limited set of results in the sql query or question, you MUST limit the number of responses to 100.
# Only include relevant columns which are required to answer user question. Limit the columns returned to only necessary.
# If I don't specify time filter, use the entire data set. Don't include start_date and end_date in your select statement.
# If I ask for Financial Year, date range is from 1-July to 30-June.
# Use the transaction_timestamp column to calculate all date and time related values.
# If I ask a question that involves today's or any relative date, use expression CURRENT_DATE() to calculate today's date.
# Text / string where clauses must be fuzzy match e.g ilike %keyword%.
# Don't forget to use \"ilike %keyword%\" for fuzzy match queries (especially for variable_name column).
# """
# request_body = {
# "messages": [
# {"role": "user", "content": [{"type": "text", "text": f'{system_prompt} {prompt}'}]}
# ],
# "semantic_model_file": f"@{DATABASE}.{SCHEMA}.{STAGE}/{FILE}",
# }
# resp = requests.post(
# url=f"https://{HOST}/api/v2/cortex/analyst/message",
# json=request_body,
# headers={
# "Authorization": f'Snowflake Token="{CONN.rest.token}"',
# "Content-Type": "application/json",
# },
# )
# request_id = resp.headers.get("X-Snowflake-Request-Id")
# if resp.status_code < 400:
# return {**resp.json(), "request_id": request_id} # type: ignore[arg-type]
# else:
# raise Exception(
# f"Failed request (id: {request_id}) with status {resp.status_code}: {resp.text}"
# )
def send_message(prompt: str) -> dict:
"""Calls the LangGraph agent and returns the response."""
agent = TextToSqlAgent()
request_id = uuid.uuid4()
response = agent.predict(prompt, request_id)
return {**response, "request_id": request_id}
def process_message(prompt: str) -> None:
"""Processes a message and adds the response to the chat."""
st.session_state.messages.append(
{"role": "user", "content": [{"type": "text", "text": prompt}]}
)
print('-------Processing Message-------------')
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
with st.spinner("🤖 Sending request for processing. Waiting for response..."):
prompt_sent_time = get_time_now()
response = send_message(prompt=prompt)
request_id = response["request_id"]
with st.spinner("🤖 Response received.. . Preparing the results..."):
query_received_time = get_time_now()
content = response["message"]["content"]
Status_flag = display_content(content=content, request_id=request_id) # type: ignore[arg-type]
query_finished_time = get_time_now()
st.session_state.messages.append(
{"role": "assistant", "content": content, "request_id": request_id}
)
# with CONN.cursor() as c:
# c.execute(f"""
# INSERT INTO innovation_streamlit.llm_sql_demo.log
# select
# OBJECT_CONSTRUCT(
# 'model','{FILE}',
# 'prompt_sent_time', '{prompt_sent_time}',
# 'prompt', '{str(prompt).replace("'", "''")}',
# 'query_received_time', '{query_received_time}',
# 'query_finished_time', '{query_finished_time}',
# 'Status', '{Status_flag}',
# 'response_content', '{str(content).replace("'", "''")}'
# );"""
# )
def make_choropleth(input_df, location_col, value_col):
fig = px.choropleth(input_df, locations=location_col, color=value_col,
locationmode="USA-states",
color_continuous_scale="Viridis",
range_color=(0, max(input_df[value_col])),
scope="usa",
labels={value_col: value_col}
)
fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
return fig
def display_content(
content: List[Dict[str, str]],
request_id: Optional[str] = None,
message_index: Optional[int] = None,
) -> None:
"""Displays a content item for a message."""
message_index = message_index or len(st.session_state.messages)
if request_id:
with st.expander("Request ID", expanded=False):
st.markdown(request_id)
for item in content:
Status_flag = 'Failed'
if item["type"] == "text":
st.markdown(item["text"])
elif item["type"] == "suggestions":
with st.expander("Suggestions", expanded=True):
for suggestion_index, suggestion in enumerate(item["suggestions"]):
if st.button(suggestion, key=f"{message_index}_{suggestion_index}"):
st.session_state.active_suggestion = suggestion
elif item["type"] == "sql":
with st.expander("SQL Query", expanded=False):
st.code(item["statement"], language="sql")
with st.expander("Results", expanded=True):
with st.spinner("Running SQL..."):
sql_statement = item["statement"]
df = pd.read_sql(sql_statement, CONN)
Status_flag = 'Successful'
if len(df.index) > 1:
data_tab, line_tab, bar_tab, map_tab = st.tabs(
["Data", "Line Chart", "Bar Chart", "Map Chart"]
)
data_tab.dataframe(df)
if len(df.columns) > 1:
df = df.set_index(df.columns[0])
with line_tab:
st.line_chart(df)
with bar_tab:
st.bar_chart(df)
if df.index.name and df.index.name.lower() in ['state', 'states']:
with map_tab:
df = df.reset_index()
fig = make_choropleth(input_df=df, location_col=df.columns.values[0], value_col=df.columns.values[1])
st.plotly_chart(fig, use_container_width=True)
else:
st.dataframe(df)
return Status_flag
def config_options():
st.sidebar.button("Start Over", key="clear_conversation")
def main():
st.title(":speech_balloon: LLM Insights & Analytics Assistant")
st.markdown("## Create your custom insights using natural language")
# st.markdown(f"**expa**")
with st.expander("Dataset Details", expanded=True):
multi = """
- Contains a Retail Transaction Dataset from kaggle
- Contains data from 2023-04-30 to 2024-04-30
- columns:
- CustomerID: Unique identifier for each customer.
- ProductID: Unique identifier for each product.
- Quantity: The number of units purchased for a particular product.
- Price: The unit price of the product.
- TransactionDate: Date and time when the transaction occurred.
- PaymentMethod: The method used by the customer to make the payment.
- StoreLocation: The location where the transaction took place.
- ProductCategory: Category to which the product belongs.
- DiscountApplied(%): Percentage of the discount applied to the product.
- TotalAmount: Total amount paid for the transaction.
"""
st.markdown(multi)
config_options()
if st.session_state.clear_conversation or "messages" not in st.session_state:
st.session_state.messages = []
st.session_state.suggestions = []
st.session_state.active_suggestion = None
for message_index, message in enumerate(st.session_state.messages):
with st.chat_message(message["role"]):
display_content(content=message["content"], message_index=message_index)
if user_input := st.chat_input("What is your question?"):
process_message(prompt=user_input)
if st.session_state.active_suggestion:
process_message(prompt=st.session_state.active_suggestion)
st.session_state.active_suggestion = None
if __name__ == "__main__":
main()