-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerator.py
26 lines (23 loc) · 1.06 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import torch.nn as nn
class Generator(nn.Module):
def __init__(self):
super(Generator,self).__init__()
self.main = nn.Sequential(
nn.ConvTranspose2d(in_channels=100,out_channels=512,kernel_size=4,stride= 1,padding= 0,bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(in_channels=512,out_channels=256,kernel_size=4,stride=2,padding=1,bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(in_channels=256,out_channels=128,kernel_size=4,stride=2,padding=1,bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(in_channels=128,out_channels=64,kernel_size=4,stride=2,padding=1,bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(in_channels=64,out_channels=1,kernel_size=4,stride=2,padding=1,bias=False),
nn.Tanh()
)
def forward(self,x):
output = self.main(x)
return output