forked from uoguelph-mlrg/Cutout
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
266 lines (207 loc) · 10.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# run train.py --dataset cifar10 --model resnet18 --data_augmentation --cutout --length 16
# run train.py --dataset cifar100 --model resnet18 --data_augmentation --cutout --length 8
# run train.py --dataset svhn --model wideresnet --learning_rate 0.01 --epochs 160 --cutout --length 20
import pdb
import argparse
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
from torch.optim.lr_scheduler import MultiStepLR
from torchvision.utils import make_grid
from torchvision import datasets, transforms
from util.misc import CSVLogger
from util.cutout import Cutout
from model.resnet import ResNet18
from model.wide_resnet import WideResNet
def run_cutout(dataset="cifar10", model="resnet18", epochs=200, batch_size=128,
learning_rate=0.1, data_augmentation=False,
cutout=False,
n_holes=1, length=8,
no_cuda=False, seed=0):
cuda = not no_cuda and torch.cuda.is_available()
cudnn.benchmark = True # Should make training should go faster for large models
torch.manual_seed(seed)
if cuda:
torch.cuda.manual_seed(seed)
test_id = dataset + '_' + model
# Image Preprocessing
if dataset == 'svhn':
normalize = transforms.Normalize(mean=[x / 255.0 for x in[109.9, 109.7, 113.8]],
std=[x / 255.0 for x in [50.1, 50.6, 50.8]])
else:
normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
train_transform = transforms.Compose([])
if data_augmentation:
train_transform.transforms.append(transforms.RandomCrop(32, padding=4))
train_transform.transforms.append(transforms.RandomHorizontalFlip())
train_transform.transforms.append(transforms.ToTensor())
train_transform.transforms.append(normalize)
if cutout:
train_transform.transforms.append(Cutout(n_holes=n_holes, length=length))
test_transform = transforms.Compose([
transforms.ToTensor(),
normalize])
if dataset == 'cifar10':
num_classes = 10
train_dataset = datasets.CIFAR10(root='data/',
train=True,
transform=train_transform,
download=True)
test_dataset = datasets.CIFAR10(root='data/',
train=False,
transform=test_transform,
download=True)
elif dataset == 'cifar100':
num_classes = 100
train_dataset = datasets.CIFAR100(root='data/',
train=True,
transform=train_transform,
download=True)
test_dataset = datasets.CIFAR100(root='data/',
train=False,
transform=test_transform,
download=True)
elif dataset == 'svhn':
num_classes = 10
train_dataset = datasets.SVHN(root='data/',
split='train',
transform=train_transform,
download=True)
extra_dataset = datasets.SVHN(root='data/',
split='extra',
transform=train_transform,
download=True)
# Combine both training splits (https://arxiv.org/pdf/1605.07146.pdf)
data = np.concatenate([train_dataset.data, extra_dataset.data], axis=0)
labels = np.concatenate([train_dataset.labels, extra_dataset.labels], axis=0)
train_dataset.data = data
train_dataset.labels = labels
test_dataset = datasets.SVHN(root='data/',
split='test',
transform=test_transform,
download=True)
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
pin_memory=True,
num_workers=2)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False,
pin_memory=True,
num_workers=2)
if model == 'resnet18':
cnn = ResNet18(num_classes=num_classes)
elif model == 'wideresnet':
if dataset == 'svhn':
cnn = WideResNet(depth=16, num_classes=num_classes, widen_factor=8,
dropRate=0.4)
else:
cnn = WideResNet(depth=28, num_classes=num_classes, widen_factor=10,
dropRate=0.3)
cnn = cnn.cuda()
criterion = nn.CrossEntropyLoss().cuda()
cnn_optimizer = torch.optim.SGD(cnn.parameters(), lr=learning_rate,
momentum=0.9, nesterov=True, weight_decay=5e-4)
if dataset == 'svhn':
scheduler = MultiStepLR(cnn_optimizer, milestones=[80, 120], gamma=0.1)
else:
scheduler = MultiStepLR(cnn_optimizer, milestones=[60, 120, 160], gamma=0.2)
#TODO: change path to relative path
filename = "/beegfs/work/workspace/ws/fr_mn119-augment-0/logs/{}.csv".format(test_id)
# filename = 'logs/' + test_id + '.csv'
args = argparse.Namespace(**{
"dataset": dataset, "model": model, "epochs": epochs, "batch_size": batch_size,
"learning_rate": learning_rate, "data_augmentation": data_augmentation,
"cutout": cutout, "n_holes": n_holes, "length": length,
"no_cuda": no_cuda, "seed": seed
})
csv_logger = CSVLogger(args=args, fieldnames=['epoch', 'train_acc', 'test_acc'], filename=filename)
def test(loader):
cnn.eval() # Change model to 'eval' mode (BN uses moving mean/var).
correct = 0.
total = 0.
for images, labels in loader:
if dataset == 'svhn':
# SVHN labels are from 1 to 10, not 0 to 9, so subtract 1
labels = labels.type_as(torch.LongTensor()).view(-1) - 1
images = Variable(images, volatile=True).cuda()
labels = Variable(labels, volatile=True).cuda()
pred = cnn(images)
pred = torch.max(pred.data, 1)[1]
total += labels.size(0)
correct += (pred == labels.data).sum()
val_acc = correct / total
cnn.train()
return val_acc
for epoch in range(epochs):
xentropy_loss_avg = 0.
correct = 0.
total = 0.
progress_bar = tqdm(train_loader)
for i, (images, labels) in enumerate(progress_bar):
progress_bar.set_description('Epoch ' + str(epoch))
if dataset == 'svhn':
# SVHN labels are from 1 to 10, not 0 to 9, so subtract 1
labels = labels.type_as(torch.LongTensor()).view(-1) - 1
images = Variable(images).cuda(async=True)
labels = Variable(labels).cuda(async=True)
cnn.zero_grad()
pred = cnn(images)
xentropy_loss = criterion(pred, labels)
xentropy_loss.backward()
cnn_optimizer.step()
xentropy_loss_avg += xentropy_loss.data[0]
# Calculate running average of accuracy
_, pred = torch.max(pred.data, 1)
total += labels.size(0)
correct += (pred == labels.data).sum()
accuracy = correct / total
progress_bar.set_postfix(
xentropy='%.3f' % (xentropy_loss_avg / (i + 1)),
acc='%.3f' % accuracy)
test_acc = test(test_loader)
tqdm.write('test_acc: %.3f' % (test_acc))
scheduler.step(epoch)
row= {'epoch': str(epoch), 'train_acc': str(accuracy), 'test_acc': str(test_acc)}
csv_logger.writerow(row)
# torch.save(cnn.state_dict(), 'checkpoints/' + test_id + '.pt')
csv_logger.close()
results= {'epoch': epoch, 'train_error': 1- accuracy, 'test_error': 1-test_acc}
# validation error for hyperband
return results
def main():
model_options = ['resnet18', 'wideresnet']
dataset_options = ['cifar10', 'cifar100', 'svhn']
parser = argparse.ArgumentParser(description='CNN')
parser.add_argument('--dataset', '-d', default='cifar10',
choices=dataset_options)
parser.add_argument('--model', '-a', default='resnet18',
choices=model_options)
parser.add_argument('--batch_size', type=int, default=128,
help='input batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=200,
help='number of epochs to train (default: 20)')
parser.add_argument('--learning_rate', type=float, default=0.1,
help='learning rate')
parser.add_argument('--data_augmentation', action='store_true', default=False,
help='augment data by flipping and cropping')
parser.add_argument('--cutout', action='store_true', default=False,
help='apply cutout')
parser.add_argument('--n_holes', type=int, default=1,
help='number of holes to cut out from image')
parser.add_argument('--length', type=int, default=8,
help='length of the holes')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=0,
help='random seed (default: 1)')
args = parser.parse_args()
run_cutout(**args.__dict__)
if __name__ == "__main__":
main()